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Modelling Global Outbreaks 
and Proliferation of COVID-19
By Leon Tribe and Robert Smith?

Many of us are experiencing the effects 
of a pandemic for the first time. We 

may not be sick, but COVID-19 has dis-
rupted our lives in some manner. From the 
trivial shortage of toilet paper to massive 
social and economic upheaval, a microscop-
ic virus is affecting all of us in one way or 
another. A medical crisis has not impacted 
the modern world this significantly since 
the 1918–1919 Spanish influenza pandem-
ic, which was caused by an H1N1 virus.

While advanced models of diseases 
often employ differential equations to 
assess virulence, it is clear that the severe 
acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) has two distinct vec-
tors of infection: community transmission 
and “recent arrivals.” The discontinuous 
nature of recent arrivals introduces mul-
tiple sources of infection and complicates 
analysis. Each new outbreak requires indi-
vidual study. So, what other techniques 

also corresponds to the point at which many 
countries began to introduce strong measures 
to combat COVID-19. For example, the day 
Italy crossed this threshold was the day the 
country effectively went into lockdown.

Unfortunately, it seems that this threshold 
is probably too late for adequate national 
intervention. For instance, Italy saw the den-
sity of cases increase to 1 in 1,000, which 
strained and broke down infrastructure. 
While beyond the scope of our current analy-
sis, it would be interesting to consider nation-
al action before and after this 1 in 10,000 
“line in the sand” — or even the 1 in 100,000 
threshold as a predictor of rapid recovery.

Predicting the Threshold’s Approach
Because a density of 1 in 10,000 provides 

a theoretical limit as to when effective 
action can commence at a national and 
personal level, we may want to predict 
the threshold’s approach. Assuming that 

can we apply to achieve a level of cer-
tainty in uncertain times?

Determining a Threshold for Action
Although there is growing evidence that 

a strong national intervention—adopted 
as early as possible—is key to economic 
recovery, we can utilize network theory 
to determine a threshold at which we per-
sonally choose to act. If we assume that 
an individual knows 100 unique people, 
each of whom has 100 friends, that makes 
10,000 people within two degrees of separa-
tion from the original person. Therefore, it 
makes sense to act before the ratio of con-
firmed cases of a disease reaches a level of 
1 per 10,000 within a population. 

Why is this so? Because at this level in 
our idealised network, you know some-
one who knows someone with the illness. 
When the density of disease victims exceeds 
this value, it generates an increased risk of 
direct exposure to an infected individual. 
Coincidentally, the threshold of 1 in 10,000 

Figure 1. Time course of COVID-19 in China using linear, logarithmic, and exponential best fits. Figure courtesy of Leon Tribe.

The Forensics of 
Emerging Diseases
By Matthew R. Francis

New diseases have always been part of 
humanity’s world, but today’s highly 

interconnected global culture facilitates 
the worldwide spread of epidemics more 
quickly than ever. To make matters worse, 
novel zoonotic diseases—brought about 
by pathogens that jump from animals to 
humans—pose an ongoing threat because 
of human practices that bring us into con-
tact with animal species with which we do 
not generally interact. One such disease is 
currently running amok across a large part 
of the world: COVID-19, caused by the pre-
viously-unknown severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2).

When a novel infection emerges, research-
ers face a wide range of challenges, in addi-
tion to the obvious medical crises. Two que-
ries are central to these challenges: Where 
did the disease come from and how bad will 
it be? Answering these questions requires a 
combination of detective work, sophisticat-
ed mathematics, on-the-ground ecological 
knowledge, and machine learning.

“It’s hard to know what we’re preparing 
for,” Michael Johansson, a biologist at the 
National Center for Emerging and Zoonotic 

Infectious Diseases (part of the Centers 
for Disease Control and Prevention), said. 
During his talk at the 2020 American 
Association for the Advancement of Science 
(AAAS) Annual Meeting, Johansson likened 
disease forecasting to hurricane prediction. 
In both cases, deterministic mathematical 
models—which require constantly-updated 
data—can only go so far before necessitat-
ing supplementation by other methods.

How to Be a Good (Disease) Host
Barbara Han is an ecologist at the Cary 

Institute of Ecosystem Studies, and her 
work largely focuses on identification of 
animal species that harbor novel diseases. 
During her presentation at the 2020 AAAS 
Annual Meeting, Han pointed out that most 
emerging pathogens come from mammals. 
In fact, over 190 identified unique zoonotic 
diseases have been associated with mammal 
species (see Figure 1, on page 4).

“The primary goal is to predict which 
species would give rise to new zoonotic 
threats to humans,” Han said. “You can 
look at which rodents, bats, carnivores, and 
so forth have a high risk of transmitting 

Figure 3. Flattening the curve through contact reduction.

See Emerging Diseases on page 4

See Global Outbreaks on page 3

Special Issue on Infectious 
Disease Modeling

This special issue highlights various applied and computational 
mathematics approaches that offer insight into the spread of 
infectious diseases, with particular emphasis on COVID-19.

Infectious diseases grow exponentially because each newly-infected person 
becomes another source of infection. In an article on page 6, David Ketcheson 
uses an SIR model to study the propagation of COVID-19 in terms of suscep-
tible, infectious, and recovered individuals. He cycles through the model’s dif-
ferent stages and accounts for the effect of non-pharmaceutical intervention.
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5 	 Math and AI-based 
Repositioning of Existing 
Drugs for COVID-19

	 There is presently no specific 
antiviral drug for the COVID-19 
pandemic, which has infected 
more than two million individu-
als worldwide. One of the most 
feasible strategies for treating 
COVID-19 patients involves 
drug repositioning, the process 
of finding new uses for exist-
ing drugs. Duc Nguyen and 
Guo-Wei Wei discuss the math-
ematical approaches behind the 
data presentation of structural-
based drug repositioning.

6 	 Looking Ahead to the 
2021 SIAM Conference on 
Computational Science  
and Engineering

	 Laura Grigori, Misha Kilmer, 
and Stefan Wild—co-chairs of 
the organizing committee for 
the 2021 SIAM Conference 
on Computational Science and 
Engineering (CSE21)—preview 
what is expected to be SIAM’s 
largest meeting to date. They 
explore CSE21’s central themes 
and discuss updates that encour-
age deeper attendee interactions.

8 	 Seven SIAM Members 
Elected as AAAS Fellows

	 In October 2019, the 
American Association for 
the Advancement of Science 
(AAAS) elected seven mem-
bers of SIAM as 2019 AAAS 
Fellows in the Section on 
Mathematics. These individuals 
were honored for their efforts to 
advance science and its appli-
cations to better serve society 
at the 2020 AAAS Annual 
Meeting, which took place this 
February in Seattle, Wash.

10 	 A Model to Predict 
COVID-19 Epidemics with 
Applications to South 
Korea, Italy, and Spain

	 Zhihua Liu, Pierre Magal, 
Ousmane Seydi, and Glenn 
Webb present several dif-
ferential equations models 
of COVID-19 epidemics that 
employ early reported case data 
from around the world to predict 
the future number of cases. They 
break the virus down into three 
phases and apply their models 
to data from the outbreaks in 
South Korea, Italy, and Spain.
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Message from the Editor-in-chief of SIAM News
By Hans Kaper

All around the world, people are feel-
ing the acute effects of a mass pan-

demic for what is likely the first time. 
Employment and education efforts are 
disrupted, certain resources are in short 
supply, some hospitals are near capacity, 
and individuals are practicing social dis-
tancing and self-isolation. In response, the 
May 2020 issue of SIAM News highlights 
some of the tools of applied and computa-
tional mathematics that offer insight into 
the spread of infectious diseases. 

This issue is motivated by the world-
wide proliferation of the novel severe 
acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) and the current pan-
demic caused by the associated disease 
COVID-19, but it addresses other infec-

tious diseases as well. The collection of 
articles within these pages is certainly not 
comprehensive, and readers will find that 
some overlap exists. Our main concern in 
assembling this compilation was timeliness. 
Anyone seeking more detailed information 
should refer to the SIAM Epidemiology 
Collection, which is freely available to all 
for one year and accessible online.1

We thank the authors for their enthusi-
astic and prompt response to our invitation 
to contribute to this special issue. Further 
pieces on the topic of disease modeling 
and COVID-19 will be published in future 
issues of SIAM News. The suggestion to 
publish a series of articles on the spread of 
infectious diseases originated within the 

1  https://epubs.siam.org/page/Epidem
iologyCollection

SIAM Activity Group on Mathematics 
of Planet Earth (SIAG/MPE), and we 
appreciate the SIAG’s prompt attention 
to this timely matter.

As your professional society, SIAM 
is working hard to help facilitate a bet-
ter understanding of COVID-19 and 
the research surrounding it. Please visit 
sinews.siam.org to read additional posts 
about SIAM’s ongoing response to the 
virus, relevant mathematical resources, 
funding agency accommodations for 
travel costs, and more.   

Hans Kaper, founding chair of the 
SIAM Activity Group on Mathematics 
of Planet Earth and editor-in-chief 
of SIAM News, is affiliate faculty in 
the Department of Mathematics and 
Statistics at Georgetown University.

Choosing Intervention Strategies 
During an Emerging Epidemic
By Lauren M. Childs

The early weeks and months of 2020 
were overshadowed by the rapidly 

spreading novel severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) that 
originated in Wuhan, China, in December 
2019. By the beginning of April, the coro-
navirus disease (COVID-19) epidemic had 
reached nearly every country in the world, 
with well over a million cases and more than 
50,000 deaths [3]. Because the epidemic’s 
spread is unprecedented in our time, there 

is much contention regarding the best con-
tainment and mitigation strategies. As with 
most emerging infections, many preven-
tive measures (e.g., vaccines) and curative 
approaches (e.g., drugs) are not yet avail-
able; therefore, countries must rely on non-
pharmaceutical interventions—such as indi-
vidual quarantine—to combat the illness.

Choosing the best intervention strategy is 
critical during an emerging epidemic, espe-
cially when uncertainties surround the dis-
ease and health systems are not adequate-
ly prepared. Public health officials often 

initially employ contact tracing, wherein 
people possibly exposed to the disease 
become the focus of non-pharmaceutical 
interventions due to their enhanced risk. 
These contacts are promptly isolated if they 
are symptomatic. Often, however, they may 
appear uninfected when located. Depending 
on the time since exposure, these individu-
als might not yet be symptomatic — though 
they could develop symptoms in the future.

The best way to manage symptom-free 
contacts is highly disputed. History has relied 
upon two main strategies: individual quaran-
tine and active symptom monitoring. Similar 
to isolation, individual quarantine involves 
the separation of potentially infected indi-
viduals from other people; this requires 
resources to provide necessities, access to 
secluded spaces, and means of enforce-
ment. In contrast, active symptom monitor-
ing allows individuals to essentially go about 
their normal routines while checking for 
symptoms at regular intervals, possibly with 
daily visits from healthcare workers or more 
technological-based self-monitoring. Under 
either intervention, patients are promptly 
isolated upon detection of symptoms. While 
individual quarantine is the more effective 
strategy by definition, it is also costlier and 
considerably more restrictive.

The success of these strategies relies 
on fundamental information about the dis-
ease’s natural history: most importantly, the 
timing of when symptoms arise and when 
individuals are able to transmit the illness. 
The period between exposure and the onset 
of symptoms is known as the incubation 
period, while the period between exposure 
and infectiousness—i.e., the ability to trans-
mit—is called the latent period (see Figure 
1). For many illnesses, symptoms and infec-
tiousness occur at roughly the same time; 
these two terms are therefore often con-
fused. In order to determine which strategy 
is most appropriate for mitigating the spread 
of emerging infections, my colleagues and 
I built a framework to compare individual 
quarantine and active symptom monitoring 
approaches. Our model considers a range 
of feasibility parameters, including delays 
in contact tracing, imperfect isolation, and 
missed contacts [6]. As with many coun-
tries during the initial stages of COVID-19, 
insufficient or nonexistent testing capabili-
ties may also hinder feasibility.

We used a discrete-time stochastic branch-
ing model—wherein individuals progress 
through a susceptible-exposed-infectious-
recovered (SEIR) disease process—and 
focused on the early stages of an epidemic 
[6, 7]. We utilized data on distributions for 
the incubation period and serial interval to 
determine the timing of this progression. 
Once an individual was symptomatic and 
thus isolated, we traced a proportion of 

Figure 1. Timing of non-pharmaceutical interventions compared to disease progression. 
Following the infection event, individuals are noninfectious (green) until the onset of infec-
tiousness, after which they can transmit the disease (orange). They are unobserved prior to 
and during contact tracing. Once an intervention—individual quarantine or active symptom 
monitoring—begins, individuals are isolated upon detection of symptoms. The gray area 
depicts the time before symptom onset. 1a. For diseases where symptom onset occurs after 
the onset of infectiousness, individuals can transmit prior to isolation (red triangle). 1b. For 
diseases where symptom onset occurs before infectiousness, no transmission is possible 
prior to isolation. Figure courtesy of Lauren Childs.

See Intervention Strategies on page 5
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Obituary: Olvi L. Mangasarian
By Michael Ferris and Stephen Wright

Olvi L. Mangasarian, John von 
Neumann Professor Emeritus of 

Mathematics and Computer Sciences at the 
University of Wisconsin-Madison, passed 
away on March 15, 2020 due to complica-
tions from a fall and subsequent stroke. He 
was a pioneer, leader, and icon in the field 
of mathematical programming, with over 
50 years of fundamental contributions to 
all aspects of continuous optimization — 
ranging from abstract theory to practical 
applications. Olvi’s work impacted genera-
tions of applied mathematicians and engi-
neers, introduced new avenues of research, 
sparked excitement in applied subjects, 
and inspired countless young minds. His 
dedicated service to the Department of 
Computer Sciences at UW-Madison—and 
the broad applied mathematics commu-
nity as a whole—exemplified the spirit and 
mission of a great academic.

Olvi was born in Baghdad, Iraq, in 1934. 
His parents were Armenian refugees who 
had fled the Armenian genocide in the 
Ottoman Empire in 1915. Olvi attended 
the Jesuit Baghdad College and American 

a disease initially spreads with minimal 
hindrance, we can rely on the properties of 
exponential growth to guide us.

One common property of exponential 
growth that researchers frequently use for 
analysis is a disease’s doubling rate. This 
rate is the exponential mirror image of the 
logarithmic half-life and tells us how long it 
takes for the number of infections to double. 
The growth of COVID-19 has been quite 
aggressive in some countries, with a dou-
bling time of as little as 1–2 days. For many 
countries, however, it takes 3–5 days for the 
number of cases to double. It is relatively 
simple to consider the population of a coun-
try and—assuming consistent exponential 

growth—determine when that country will 
reach the critical density threshold of 1 con-
firmed case per 10,000 people.

The key assumption here is consistent 
exponential growth. In fact, few countries 
have exhibited a constant doubling time 
much past a week or two. Therefore, due 
to exponential growth’s sensitivity to initial 
conditions, we can only rely upon any pre-
diction based on this technique for a week 
(or possibly two) ahead of the event.

Predicting a Slowing of Growth
Once we are in the midst of aggressive 

growth, what methods can we use to deter-
mine our progress? A common technique 
is to consider a log plot of the growth. If 
the curve is concave up, the doubling time 
is shortening and the disease is becoming 

more aggressive. If the curve is flat, the 
disease is exhibiting consistent exponen-
tial growth and will eventually overwhelm 
the region. If the curve is concave down, 
growth is slowing and may be brought 
under control with time.

An alternative option involves determin-
ing where an illness has progressed on its 
characteristic curve. We can split the typical 
sigmoidal curve of a disease’s confirmed 
cases into three phases:

1. Exponential growth
2. Linear growth
3. Logarithmic flattening

By considering the best least-squares fit of 
these curves to the confirmed cases data, we 
gain an understanding of our status in terms 
of disease progress (see Figure 1, on page 1).

Utilizing this technique while accounting 
for the percentage of recovered cases allows 
us to define the moment when a country 
has recovered from disease. For example, 
with the slowing growth of new cases and 
the progressive increase in recoveries, the 
active cases (= confirmed cases − deaths − 
recoveries) follow a bell curve. By defining 
a percentage level of recovery, we can make 
predictions as to when this level is crossed.

Prediction in the                
Absence of Recovery Data

 In March 2020, the Johns Hopkins 
Coronavirus Resource Center temporarily 
stopped releasing the numbers of recovered 
cases for countries of the world; the data 
was simply too unreliable. In the absence of 
recovery data, how else can we understand 
a country’s recovery?

One option is to reconsider the doubling 
time of COVID-19’s growth. Examining 
the doubling time’s daily trend yields a 
“fingerprint” of the disease and its progress. 
Figure 2 identifies a selection of countries 
and their doubling times through March 11, 
2020. Each plot has a unique fingerprint, 
but some share common characteristics. For 
example, China and Singapore showed an 
increasing doubling time—i.e., a move to 
recovery—early on, although both coun-
tries experienced a setback in the middle of 
February before beginning to recover again.

South Korea and Italy both saw their first 
COVID-19 outbreaks in January and began 
to recover quickly until around February 
20, when strong resurgences occurred. The 
countries both began recovering again over 
the next two weeks, but their ultimate out-
comes have been quite different. By March 
25, South Korea’s doubling time was over 
20 days and the country was approaching a 
national recovery. Italy’s doubling time was 
about one third of South Korea’s, and the 
nation was far from recovering.

In contrast, the U.S. began recovering 
from its early outbreak but then underwent 
a setback towards the end of February. 
This new outbreak, presumably the one 
in the state of Washington, showed signs 
of an initial recovery but then grew out of 
control; the graph in Figure 2 dips again 
about a week later. Germany saw no strong 
recovery after its COVID-19 outbreak in 
late February and the doubling times have 
remained flat, which indicates ongoing 
exponential growth.

Lastly, Spain and the U.K. faced an initial 
outbreak at the start of February from which 
there was recovery, only to experience a sec-
ondary outbreak in the middle of the month. 
There was again recovery until a third wave 
at the end of February, from which both 
countries struggled to recover as quickly.

With the absence of recovery data, our 
definition of national recovery uses the 
duration of infection as the doubling time, 
since this implies that COVID-19 is well-
controlled. Once a country has a doubling 
time of this length, we can consider it 
recovered. In the case of China, for exam-
ple, a doubling time of 30 days correlated 
with around 80 percent of all patients hav-
ing recovered or died.

What Did We Learn?
In summary, understanding the growth 

patterns of a fast-moving disease in the 
early stages of a pandemic is a challenging 
task. One-size-fits-all models are not appro-
priate, and long-term predictions—such as 
equilibrium values of differential equa-
tions, which use infinite time as a proxy for 
the distant future—are likely to be futile. 
Instead, adapting models to short-term data 
enables a deeper comprehension of the 
existing data while also allowing us to make 
predictions when data is unavailable.

Mathematics indicates that the fast-mov-
ing nature of COVID-19 necessitates fast-
moving models. By determining crucial 
thresholds and adapting short-term “data 
fits,” modelling offers us a glimpse into 
the  pandemic’s future across the world and 
clearly indicates that we must act as early 
as possible to mitigate spread. Even if this 
information comes too late for COVID-19, 
the lessons learned from this disease will 
apply to the next one. Infectious diseases 
will always be with us.

Leon Tribe holds an honours degree in 
mathematical physics and is head of data 
analytics at Tribe and Company, which 
is based in New South Wales, Australia. 
Robert Smith? (the question mark is part of 
his name) is a professor of disease model-
ling at the University of Ottawa, Canada.Figure 2. Doubling times of COVID-19 for a selection of countries. A higher (longer) doubling 

time is better. Figure courtesy of Leon Tribe.

University of Beirut before completing his 
final two years of undergraduate work on full 
scholarship at Princeton University, where 
he majored in civil 
engineering. He gradu-
ated from Princeton as 
a member of Phi Beta 
Kappa with a B.S.E. in 
1954 and an M.S.E. in 
1955. Olvi then stud-
ied applied mathematics 
at Harvard University, 
where he experienced 
the promise and frustra-
tions of the emerging 
computer age. While 
at Harvard, he worked 
on the UNIVAC—a 
room-sized computer 
powered by vacuum 
tubes that continually 
required replacement—
and used punch cards 
that at times cascaded 
helter-skelter across the floor. He received 
his Ph.D. from Harvard in 1959.

That same year, Olvi married Claire 
Garabedian, solidifying an alliance that 

ended only with his passing. They first 
resided in Berkeley, Calif., where Olvi 
worked at Shell Development Company. In 

1967, they moved to 
Madison, Wis., when 
Olvi joined the faculty 
of the Department of 
Computer Sciences at 
UW-Madison.

Early in his career, 
Olvi wrote a seminal 
paper on linear and 
nonlinear separation of 
patterns by linear pro-
gramming. Published 
in 1965, this paper 
provided the foun-
dation of the mathe-
matical programming 
approach to data min-
ing and knowledge 
discovery. Olvi revis-
ited this subject in the 
late 1980s, amassing 

a great following and cementing optimiza-
tion’s fundamental role in the important 
applied domain of data science. As comput-
ing capabilities improved, he began explor-

ing methods for data classification, which 
he employed to determine the malignancy 
of biopsied breast tissue samples. This 
effort ultimately yielded a remarkably suc-
cessful decision support system that was 
used in in clinical practice.

Olvi remained a central figure in con-
tinuous optimization throughout his career. 
One famous contribution, the Mangasarian-
Fromovitz constraint qualification (MFCQ) 
for nonlinear programming (published in 
1967), lies at the heart of constrained 
optimization. Subsequent research has indi-
cated that the MFCQ can be extended to 
infinite-dimensional settings and is precise-
ly the right condition to guarantee metric 
regularity — a form of regular behavior of 
the feasible set under the constraints’ defor-
mations. It has thus enabled many subse-
quent advances in nonlinear programming.

In 1969, Olvi published Nonlinear 
Programming, a classic monograph that was 
reprinted in 1994 as part of SIAM’s Classics 
in Applied Mathematics series. This text-
book remains an invaluable resource for stu-
dents and a basic reference for researchers.

Olvi L. Mangasarian, 1934-2020. Photo 
courtesy of Claire Mangasarian.

See Mangasarian on page 4

Global Outbreaks
Continued from page 1
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something to humans, then examine their 
features to try to understand what separates 
those with the capacity to infect humans 
from those without it.”

One complication is that reservoir spe-
cies—rats, bats, monkeys, etc.—that harbor 
the pathogens often do not infect us directly. 
For instance, humans are infected with Zika 
virus via Aedes mosquito bites, but scien-
tists think that the reservoir species is a type 
of monkey, thus making the mosquitoes dis-
ease vectors rather than reservoirs. In addi-
tion, the vector animals themselves may 
not be susceptible to zoonotic diseases; this 
means that they might harbor the pathogens 
and pass them to each other without getting 
sick, regardless of human vulnerability.

Identification of reservoir species has 
faced its share of successes and failures. For 
example, researchers have linked rodents 
to both Lyme disease and the plague and 
implicated bats in diseases such as rabies, 
the Nipah virus, and possibly Ebola. We 
know that monkeys are probably reservoirs 
for the Zika virus and bats almost certainly 
harbored the coronavirus that caused the 
2003 SARS epidemic. However, the evi-
dence is circumstantial.

Han and her colleagues identified five 
primary predictive factors that make species 
potential reservoirs for zoonotic pathogens: 
litter size ( ),q1  the number of litters each 
species has per year ( ),q2  maximum lon-
gevity ( ),q3  population density ( ),q4  and 
social group size ( ).q5  Physical character-
istics like body size correlate with many of 
these properties; for instance, small rodents 
have many tiny offspring and often live in 
very high-density conditions that facilitate 
transmission of pathogens between animals.

During her AAAS talk, Han described 
these parameters’ use in a modified version 
of the classic SIR model for epidemics:

      
dS
dt

b N b N SI S= − − −0 1
2 β µ

           
dI
dt

SI I= − +β γ µ( )

               dR
dt

I R= −γ µ ,      
  
where N t S I R( )= + +  is the total local 
population of a rodent species and S ,  I , 
and R  respectively denote the number of 
susceptible, infected, and recovered ani-
mals. She derives the fixed parameters 
from the species characteristics: birth rate 
b0 1 2= q q ,  death rate µ θ= −

3
1,  and popu-

lation density parameter b b1 0 4= −( ) / .µ θ  
The variable parameters are recovery rate 
1 2 1

3/ < <−γ θ  and transmission probability 
0 1 5 5. ,θ β θ< <  which one can adjust to suit 
the specific population under consideration 
(the standard SIR model can be recovered 
by setting b b u0 1 0= = = , which implies a 
constant population N ).

In addition to species characteristics, the 
frequency of contact between humans and 
animals is a major factor. “You do not have 
a transmission event unless there is some 
opportunity for that pathogen to get to you,” 

Olvi achieved numerous fundamental 
results throughout his career, most nota-
bly in the areas of linear and nonlinear 
programming, complementarity problems, 
variational inequalities, error bounds for 
inequality systems, and parallel optimiza-
tion. His work is known for its elegance, 
enormous impact, and foundational role in 
copious subsequent extensions.

From 1970 until about 1990, Olvi and 
several colleagues (including Ben Rosen, 
Stephen Robinson, and Robert Meyer) 
organized a series of conferences in 
Madison, Wis., first on nonlinear program-
ming and later on parallel optimization. 
These meetings were important events in 
their fields and attracted top researchers 
from around the world, as well as junior 
researchers and students. They inspired the 
introduction and discussion of many excit-
ing ideas and are remembered vividly by 
those who participated.

During his time at UW-Madison, Olvi 
mentored 28 Ph.D. students and was chair 
of the Department of Computer Sciences for 
three years. Following his retirement from 
the university, Olvi spent the winter months 
in San Diego, Calif., where he worked as 
a research scientist at the University of 
California, San Diego.

From 1969-1984, Olvi served on the 
editorial boards of the SIAM Journal on 
Control and Optimization and SIAM Journal 
on Optimization. He was a correspond-

ing editor from 1985-1993. Olvi became a 
SIAM Fellow in 2011 and was recognized 
for his efforts to advance the application 
of mathematics to science and industry. 
He also received the 2000 Frederick W. 
Lanchester Prize from INFORMS for his 
research on machine learning and data min-
ing, among other honors.

Olvi’s love of classical music began in 
his college years and continued throughout 
his life. Like many mathematicians, he 
was partial to the Baroque period. Johann 
Sebastian Bach topped his playlist, and 
concerts at the Wisconsin Union Theater 
were a particular delight.

Olvi was an inspirational person who 
will be greatly missed by the Department of 
Computer Sciences at UW-Madison, which 
he helped shape over many years of service, 
and by his many friends and admirers in the 
optimization community. He is survived 
by his wife Claire; sons Leon, Jeffrey, and 
Aram; and six grandchildren.

This obituary was adapted in part from 
a tribute1 by the Department of Computer 
Sciences at the University of Wisconsin-
Madison, which published in March.

Michael Ferris and Stephen Wright are 
professors in the Department of Computer 
Sciences at the University of Wisconsin-
Madison.

1  https://www.cs.wisc.edu/2020/03/20/
olvi-mangasarian-emeritus-professor-and-
pioneer-in-mathematical-programming-
passed-away-march-15

Han said. “When humans encroach on wild 
lands, or prevent animals from accessing 
food resources so they have to forage in dif-
ferent places, these things all contribute to 
increased contact frequency with people.”

Changes in human behavior—including 
deforestation, widespread urbanization, dis-
ruption of traditional hunting patterns, and 
so on—can also introduce contact with 
species to which we are unaccustomed. 
These alterations to human-animal interac-
tions mean that people hunt animals they 
typically did not in the past, or share living 
space with novel species. To put it another 
way: while bats may harbor SARS-CoV-2, 
a cascade of human behaviors brought our 
species into collision and transformed lim-
ited exposure into a global pandemic.

The Hole in the Doughnut
However, scientists can seldom imme-

diately link a zoonotic outbreak to contact 
with another species, particularly when 
a vector or other intermediary species is 
involved — as with the 2003 SARS out-
break, where a civet was likely the carrier 
that infected the first humans. “We’re still 
clambering for information on primates,” 
Han said, referring to her own work to 
identify the source of the recent devas-
tating Zika epidemic in the Americas. 
“Without understanding the reservoir’s 
biology, how can you make an accurate 
prediction that’s going to help you take 
preventative action?” 

When a paucity of information exists 
about a species, epidemiologists become 
detectives. To identify potential reservoirs 
for the Zika virus, Han and her collabora-
tors tabulated 33 parameters for 364 pri-
mate species (not counting humans). These 
traits included those used for rodents but 
also comprised geographic range, metabolic 
rate, and other potentially useful informa-
tion. At least one parameter was unknown 
for over a third of the primates, so the group 
applied an iterative method called multi-
ply imputed chained equations (MICE) to 
estimate values for these species. Since 
the relationship between parameters is not 
entirely random within species—for exam-
ple, small species do not normally produce 
multiple large offspring—and similar spe-
cies often possess similar characteristics, 
the MICE method employs regression to fill 
in the missing information in a biologically 
consistent manner [1].

But species parameters are not enough; 
the hole in the doughnut inside the other 
doughnut is whether a given species is 
the reservoir for a zoonotic disease. To 
estimate this probability, Han and her team 
utilized Bayesian Multi-label Learning via 
Positive Labels (BMLPL) [3]. This method 
assigns binary labels to each species, spe-
cifically asking whether animals carry a 
given virus. The answer might be known 
for certain species, such as monkeys that 
are affirmatively tested to carry the Zika 
or dengue virus. The group’s analysis 
involved six flaviviruses (the type includ-
ing Zika, dengue, and West Nile) and the 
aforementioned 364 types of primates.

The training data for BMLPL are a 
matrix X  composed of the known param-
eters and those obtained via MICE. The 
“label” matrix Y  consists of 0 and 1 val-
ues—depending on whether a given species 
carries a particular virus—for each of the 
six viruses under consideration. Since this 
information is unknown for most of the 
364 species, Y  is a very sparse matrix. 
However, related species are more likely 
to harbor similar viruses, so the entries are 
not random in general. The BMLPL method 
takes in the vector of parameters for a spe-
cies x  from X  and uses machine learning 
to extract a label vector y  from Y.

These coupled methods allowed Han and 
her colleagues to identify primate reservoirs 
for flaviviruses with 82 percent accuracy. 
They also found that these reservoirs were 
the most likely to live near or among 
humans. However, Han pointed out that 
reconstructing missing parameters can only 
go so far. “I think we are quickly heading 

towards a wall of just not having the kind 
of available data that we need,” she said. 
“There must be equal investment in generat-
ing the raw data required for useful, action-
able, and accurate predictions. Without that, 
we cannot move forward.”

This is certainly a common refrain in 
the context of novel diseases, wherein we 
are hampered by the fact that obtaining 
data from noisy, real-world situations takes 
time. It is not enough to say that bats are 
the reservoir for a disease, or that Aedes 
mosquitoes carry Zika virus. We must know 
what specific human-animal interactions 
turn zoonotic infections into epidemics and 
learn how to mitigate them. Even the best 
detectives can only do so much; they need 
evidence in order to work.
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ence writer, public speaker, educator, and 
frequent wearer of jaunty hats. His website 
is BowlerHatScience.org.

Figure 1. Prevalence of known zoonotic pathogens and their distribution among rodent spe-
cies. Most classified pathogens are viruses and most species only harbor one type that is 
known to be harmful to humans. Figure courtesy of [2].
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By Duc D. Nguyen and Guo-Wei Wei

Coronavirus disease 2019 (COVID-19), 
an infectious disease caused by severe 

acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), was first reported in Wuhan, 
China, in December 2019 and has rapidly 
spread throughout the world. By April 2, 
2020, COVID-19 had infected more than one 
million individuals and was responsible for 
over 50,000 fatalities. No specific antiviral 
drug for this pandemic currently exists.

Drug discovery involves target discovery, 
lead discovery, lead optimization, preclini-
cal development, three phases of clinical 
trials, and an eventual market launch — only 
if everything goes well. On average, bring-
ing a new drug to market requires about $2.6 
billion dollars and over 10 years of prepara-
tion. It typically takes researchers more than 
a year to develop effective viral vaccines.

Drug repositioning (also known as drug 
repurposing)—which involves the investi-
gation of existing drugs for new therapeu-
tic target indications—is one of the most 
feasible strategies for treating COVID-19 
patients. It has emerged as a successful 
way to accelerate drug discovery due to 
the reduced costs and expedited approval 

procedures [7]. Several successful exam-
ples unveil the value of drug repositioning. 
Nelfinavir, which was initially developed 
to treat human immunodeficiency virus 
(HIV), is now used for cancer treatments. 
Researchers first designed amantadine to 
combat the type A influenza viral infection, 
but it is presently used to treat Parkinson’s 
disease. And remdesivir, an experimental 
drug initially developed to inhibit Middle 
East Respiratory Syndrome, is being repur-
posed for COVID-19.

In recent years, the rapid growth of drug-
related datasets and open data initiatives has 
inspired new developments for computa-
tional drug repositioning, particularly struc-
tural-based drug repositioning (SBDR). 
Machine learning (ML), network analysis, 
and text mining and semantic inference are 
three major computational approaches that 
researchers commonly apply to drug repur-
posing [7]. Swift accumulation of genetic 
and structural databases, development of 
low-dimensional mathematical representa-
tions of complex biomolecular structures 
[10], and availability of advanced deep 
learning algorithms have made ML-based 
drug repositioning one of the most promis-
ing approaches for COVID-19 [7].

The first step of SBDR is the selection of 
one or several effective targets. Studies show 
that the SARS-CoV-2 genome is very close 
to that of the early SARS-CoV. The sequence 
identity percentages of the SARS-CoV-2 
main protease, RNA polymerase, and spike 
protein with those of corresponding SARS-
CoV proteins are 96.08, 96, and 76, respec-

tively. The catalytic sites of the SARS-CoV 
main protease are very conservative and serve 
as attractive therapeutic targets. Therefore, 
a potent inhibitor of this protease is likely a 
potent inhibitor of the SARS-CoV-2 main 
protease. Unfortunately, there is also cur-
rently no effective SARS-CoV therapy.

Math and AI-based Repositioning of Existing Drugs for COVID-19

Figure 1. Flow chart of mathematics and artificial intelligence (AI)-based COVID-19 drug 
repositioning. Figure adapted from [12].

Intervention Strategies
Continued from page 2

his/her contacts with a time lag that accounts 
for the possibility of delays — as would 
occur during a real epidemic. While infec-
tious, patients generate new infections fol-
lowing a negative binomial distribution with 
a dispersion parameter that allows for vari-
ability in infectiousness [6, 8]. The basic 
reproductive number ( )R0  and the fitted 
distribution of infectiousness dictate the 
number of new infections in a given time 
period. Based on published results for dis-
tributions of the incubation period and serial 
interval, we used particle filtering—i.e., a 
sequential Monte Carlo algorithm—to fit 
the maximum duration of infectiousness, 
time of peak infectiousness, and time offset 
between the incubation and latent periods.

This framework allowed us to examine 
the extent to which individual quarantine 
and active symptom monitoring can miti-
gate or control an epidemic; we do so by 
determining the effective reproductive num-
bers ( )Reff  under each intervention in high 
and low feasibility settings [6]. For diseases 
where symptoms emerge prior to or at the 
onset of infectiousness—like Ebola, pertus-
sis (whooping cough), SARS, and Middle 
East respiratory syndrome—individual 
quarantine yields little additional benefit 
over active symptom monitoring. However, 
the absolute ability to control a disease, 
i.e., driving Reff<1,  under either scenario 
is a combination of the basic reproduc-
tive number and the feasibility setting. For 
example, pertussis was uncontrollable with 
either strategy when R0 5= ,  though Reff  fell 

below 2 with both non-pharmaceutical inter-
ventions. In contrast, short-course illnesses 
(such as influenza A) or those with exten-
sive pre-symptomatic infectiousness (such 
as Hepatitis A) showed significantly greater 
impacts with individual quarantine. In a 
high feasibility setting where contact tracing 
and isolation are effective, Reff  fell below 
0.5 with individual quarantine but remained 
above 1 for active symptom monitoring.

In the ongoing COVID-19 epidemic, a 
key uncertainty is the extent of transmis-
sion that occurs when individuals do not 
display symptoms. The incidence of pre-
symptomatic or asymptomatic cases of 
COVID-19 inspired considerable debate 
in the community when an early study 
reporting pre-symptomatic transmission 
later came into question [9]. Furthermore, 
reported serial intervals—the time between 
symptom onset of an infector and symptom 
onset of an infectee—have varied consider-
ably. We utilized two published estimates 
of the serial interval: one short (mean of 
4.8 days) and one longer (mean of 7.5 
days) [4, 5]. Model results using data from 
the shorter interval indicate that the mean 
time of infectiousness is nearly a day prior 
to symptom onset, suggesting consider-
able pre-symptomatic transmission [7]. We 
found the mean time of infectiousness 
using the longer serial interval to be shortly 
after symptom onset, although a period of 
pre-symptomatic transmissibility remains.

By employing our framework and param-
eter estimations, we determined that in high 
feasibility settings—where most contacts are 
traced with minimal delay and isolation is 
nearly perfect—individual quarantine can 

drive down transmission in more than 95 per-
cent of scenarios [7]. Comparatively, active 
symptom monitoring reduces Reff  below 1 
only 12 percent of the time. Low feasibil-
ity settings—where about half the contacts 
are traced, isolation is moderately effective, 
and longer delays for tracing and treatment 
exist—cannot sufficiently achieve control 
with either individual quarantine or active 
symptom monitoring. Our work assumed 
current estimates of the basic reproduc-
tive number of COVID-19: R0 2 2= .  [4, 8]. 
However, control was impossible even when 
reducing R0  to 1.5. The inability for disease 
containment in these cases stems from the 
fact that many transmission chains are not 
followed at all, not followed quickly enough, 
or incompletely stopped to prevent additional 
spread. Nonetheless, onward transmissions 
can be blocked for an individual whose con-
tacts are traced, therefore reducing overall 
burden within the population. Thus, even in 
situations where containment is inconceiv-
able with individual quarantine and active 
symptom monitoring, these strategies will 
help mitigate transmission and can be used 
in conjunction with other policies.

To more adequately track the burden of 
individual quarantine in the COVID-19 
outbreak, we also considered a fraction of 
ultimately uninfected but traced contacts 
who self-quarantine for 14 days—the cur-
rent recommendation [1, 2]—before return-
ing to normal activities. Thus, the number 
of individuals under quarantine grows sig-
nificantly more quickly than the number of 
cases (see Figure 2) and is likely to rapidly 
outpace available resources. In these situ-
ations, people must exercise more general 
interventions like mass quarantine, travel 
restrictions, or social distancing. However, 
it is important to note that such interven-
tions also depend on our understanding of a 
disease’s natural history. With COVID-19, 
which shows evidence of pre-symptomatic 
transmission, mass quarantine—as occurred 
on the Diamond Princess cruise ship—
forced infected and uninfected individuals 
to remain together in close quarters and may 
have led to additional cases.

Contact tracing and the resulting non-
pharmaceutical interventions, like individu-
al quarantine and active symptom monitor-
ing, have the potential to be quite effective 
in combatting certain types of infectious 
diseases. The extent of each strategy’s effi-
cacy depends on assumptions pertaining to 
the underlying parameters, such as serial 
interval, incubation period, and feasibility 
setting. In some circumstances, particularly 
when symptoms arise before infectiousness, 
both approaches may adequately eliminate 
the disease. In other scenarios, as appears 

to be the case in the ongoing COVID-19 
pandemic, use of these measures alone is 
insufficient. Nevertheless, individual quar-
antine and active symptom monitoring do 
mitigate spread and can complement social 
distancing and travel restrictions.
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Figure 2. Simulated number of cumulative infections and individuals currently under quaran-
tine. The daily count of cumulative infections is shown in red and the known infected contacts 
currently under quarantine appear in blue. Uninfected contacts currently under quarantine that 
assume a 1:1 ratio of uninfected to infected contacts traced are in dark green, and uninfected 
contacts currently under quarantine that assume a 9:1 ratio of uninfected to infected contacts 
traced are in light green. Quarantine is imposed when the cumulative case count reaches 
1,000. These results assume a low feasibility setting, a basic reproductive number R0 2 2= . , 
and a shorter mean serial interval of 4.8 days. Figure courtesy of [7].

See AI-based Repositioning on page 8
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Modeling the Spread of COVID-19
By David I. Ketcheson

In the last several months, the rapid spread 
of COVID-19—the disease caused by the 

novel severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2)—has turned 
our daily lives upside down. As of early 
April, the number of confirmed cases was 
well over one million, with the number 
of total infections certainly much higher. 
But these numbers are small compared to 
what we know will come. This is because 
the virus’s spread is a classic example of 
exponential growth, in which the increase 
of some quantity (in this case, the infected 
population) is proportional to its current 
size. Infectious diseases grow exponen-
tially because each newly-infected person 
becomes another source of infection.

One of the simplest epidemiological 
models is the SIR model [3]. It divides the 
population into three groups:

• Susceptible individuals ( ),S  who have 
not yet been infected

• Infectious individuals ( ),I  who are 
infected and can infect others

• Recovered individuals ( ),R  who were 
previously infected and are now immune.

The model takes the form of three dif-
ferential equations that describe the rates 
at which individuals transition between 
these groups:

  
                 

dS
dt

IS=−b
 
  

               

dI
dt

IS I= −β γ

	         
dR
dt

I= g .

S t( ),  I t( ),  and R t( )  are the respective 
fractions of the population in the suscep-
tible, infectious, and recovered groups. 
We assume that people randomly come 
into contact with each other at a rate of b 
encounters per person per day. Each time 
an infectious person encounters a suscep-
tible person, the virus spreads. Meanwhile, 
1/g  is the average infectious period. Thus, 
if a single individual is initially infectious, 
he/she will pass the disease to R0=β γ/  
other people on average. R0  is called the 
basic reproduction number and is a prop-
erty of both the disease and the behavior of 
the population in which it propagates.

Figure 1 depicts the typical spread of a 
new disease in a completely susceptible pop-
ulation. Since initially S»1  and I R, ,1  
we observe exponential growth as predicted 
by the second differential equation:

	
            ′ ≈ −I t I t( ) ( ) ( ),β γ

whose approximate solution is I t( )= 
exp(( ) ).β γ- t  If β γ< ,  the infectious 

population will decrease; this makes sense 
because R0 1<  in this case, meaning that 
each infected individual passes the disease 
to less than one other person on average. 
But if β γ> ,  the number of infected people 
will double over each time interval of length
 
  	         td= −

ln( ) ,2
β γ  

  
which is known as the doubling time. This 
exponential growth will eventually slow 
as the susceptible population S  decreas-
es. We reach the peak in the infectious 
population when I t' ,( )=0  i.e., when 
β γS=  or S R=1 0/ .

Although the SIR model is simple, it is 
a surprisingly powerful tool for both quali-
tative and quantitative predictions in the 
real world [2]. However, it is notoriously 
difficult to determine the model parameters 
β γ, —or equivalently, R0  and td—for a 
new disease while the epidemic is still 
growing. Early approximations of R0  for 
COVID-19 ranged from about 2.5 to as 
low as 1.4, but more recent estimates 
put R0  closer to 4. Measured values of 
the doubling time have ranged from two 
days to one week, with typical values of 
roughly three-four days. 

Figure 2 displays the results of modeling 
COVID-19’s spread on a global scale with 
these parameters. The natural consequence 
of rapid proliferation within a completely 
susceptible population is a pandemic that 
peaks during the summer and infects the 
great majority of humankind. Although 
most cases of COVID-19 are mild or 
asymptomatic, it is clear that this scenario 
would completely overwhelm the health-
care systems in every country for at least 
several weeks during the peak of the crisis.

Equilibrium
The SIR model is at equilibrium if and 

only if I=0,  since all terms on the right-
hand side of the system are proportional 
to I .  If this equilibrium is stable, a small 
local outbreak will not spread. But if it is 
unstable, any small outbreak will become 
a global epidemic. Eigenvalue analysis 
confirms what we have already observed: 
the zero-infection equilibrium is stable if 
and only if S R£1 0/ .  This means that a 
certain fraction of the population must 
catch the disease before it will die out; 
that fraction is ( ) / .R R0 01-  This intuitively 
makes sense. For instance, suppose that R0 
is 4. In a fully susceptible population, each 
infected person will infect about four other 

Figure 1. Typical SIR (susceptible-infectious-recovered) model behavior. 

Figure 2. Predicted spread of COVID-19 in the absence of intervention.

By Laura Grigori, Misha              
E. Kilmer, and Stefan M. Wild 

Interested in participating in a SIAM con-
ference? The 2021 SIAM Conference 

on Computational Science and Engineering 
(CSE21),1 to be held March 1-5, 2021 in Fort 
Worth, Texas, is an ideal venue for presenting 
your work and networking with colleagues.

If you are an applied mathematician, com-
puter scientist, domain scientist, or engi-
neer—and if your research is related to the 
theory, development, or use of computational 
technologies for the solution of problems in 
science and engineering—the biennial CSE 
conference is for you. CSE21 is expected to 
be SIAM’s largest meeting to date, which is 
unsurprising given the interdisciplinary nature 
of computational science and engineering and 
the broad impact of research in this area. The 
organizing committee has designed CSE21 to 
highlight trailblazing activities and research 
that you will not want to miss.

The committee has reformatted the con-
ference to encourage broader community 
participation and deeper attendee interac-
tions. Highlights include the following:

• Six minitutorials that span the week and 
cover software and computing tools from 
around the world

1  https://www.siam.org/conferences/cm/
program/cse21

Looking Ahead to the 2021 SIAM Conference 
on Computational Science and Engineering

opportunities4 are also available for the 
CSE community. All conference attendees 
are welcome to come to BE sessions and 
participate in the BE program.

Themes of CSE21 include traditional 
hot topics such as multiscale, multiphys-
ics, and multilevel methods, as well as 
emerging research areas like quantum algo-
rithms, computation, and information sci-
ence. Presentations will also address the 
mathematics of artificial intelligence and 
machine learning.

While we strongly encourage proposals 
for minisymposia, posters, and contrib-
uted talks in areas that relate to the CSE21 
themes, we welcome participation from 
anyone whose research falls within the 
broad scope of the field. Submissions in all 
forms are currently open.5

Opportunities for employers and institu-
tions to sponsor CSE21 activities or par-
ticipate in a daylong career fair are also 
currently available. Sponsorship forms are 
accessible on the conference page.6

Neither SIAM membership nor mem-
bership in the SIAM Activity Group on 

4   http://shinstitute.org/siam-cse21-broader-
engagement-volunteer-opportunities/

5  https://www.siam.org/conferences/cm/
submissions-and-deadlines/cse21-submissions-
deadlines

6 https://www.siam.org/Portals/0/Conferences/
CSE21/CSE21%20Sponsor%20Form.pdf

Computational Science and Engineering 
(SIAG/CSE) is required for conference reg-
istration. However, SIAM members will 
receive a discounted registration fee and 
members of the SIAG/CSE are entitled to 
an additional discount.

CSE21 promises to facilitate in-depth 
technical discussions pertaining to a wide 
variety of major computational efforts on 
large-scale problems in science and engi-
neering. The meeting will foster the inter-
disciplinary culture necessary to meet these 
challenges and promote the training of the 
next generation of computational scientists. 
We hope to see you in Fort Worth! 	

Laura Grigori, Misha E. Kilmer, and 
Stefan M. Wild are co-chairs of the orga-
nizing committee for the 2021 SIAM 
Conference on Computational Science and 
Engineering. Laura Grigori is a senior 
research scientist at Inria and Sorbonne 
University, France, as well as a SIAM 
Fellow. Misha E. Kilmer is William 
Walker Professor of Mathematics at Tufts 
University. She is also a SIAM Fellow. 
Stefan M. Wild is a computational math-
ematician in the Laboratory for Applied 
Mathematics, Numerical Software, and 
Statistics at Argonne National Laboratory. 
He is a Senior Fellow at Northwestern 
University’s Northwestern Argonne Institute 
of Science and Engineering.

• Action-packed poster sessions that fea-
ture the return of e-posters, plenary poster 
blitzes, and cash prizes for poster awards

• Exciting panels intended for all career 
levels and research and development sup-
port worldwide

• Plenary talks on state-of-the-art 
research across the CSE landscape

• Contributed lectures integrated with 
fast-paced minisymposia 

• An end-of-conference award ceremony 
with lectures from prize recipients.

The Broader Engagement (BE) program2 
will be present at the conference for the 
fourth time and seeks to expand the CSE 
community by supporting individuals from 
diverse backgrounds while simultaneously 
catalyzing change to create a more inclu-
sive and diverse society. The program helps 
participants develop a sense of belonging 
through an orientation session, occasions 
for mentorship, and motivational workshops 
and other activities. To support technical 
growth (and in addition to CSE21’s techni-
cal program), BE includes small learning 
groups called “Guided Affinity Groups,”3 
entry-level tutorials, and career and pro-
fessional development sessions. Volunteer 

2   http://shinstitute.org/siam-cse21-broader-
engagement-program/

3  http://shinstitute.org/guided-affinity-
groups-for-be-cse21/

See Spread of COVID-19 on page 7
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people. But if three-fourths of the popula-
tion is already recovered and thus immune, 
then one infectious individual will only 
pass the disease to one new susceptible 
individual on average. This notion is called 
herd immunity. An individual who is still 
susceptible but lives in a society that is 
largely immune to a given illness is very 
unlikely to catch that illness because of the 
stability of the zero-infection equilibrium. 
In fact, the fraction of people who will 
eventually become infected is greater than 
( ) / ,R R0 01-  since that is simply the point at 
which the equilibrium stabilizes.

The system still must reach this equilibri-
um, and along the way many more cases will 
emerge. The number of excess infections is 
known as epidemiological overshoot.

Intervention
The basic SIR model assumes that the 

contact rate b  is constant in time. But as 
with COVID-19, a threatened population 
may change its behavior in an effort to 
reduce the rate of contact and slow or halt 
a disease’s spread. This is the goal of the 
current widespread school and work clo-
sures, stay-at-home directives, and other 
restrictive social distancing measures. The 
medical literature refers to such phenom-
ena as non-pharmaceutical interventions. 
If we denote the fraction of contact pre-
vented through intervention as q t( ),  we 
can include it in the SIR model as follows:

            
dS
dt

q t IS=− −( ( ))1 b

         dI
dt

q t IS I= − −( ( ))1 β γ

                    
 	           dR

dt
I= g .

In the absence of intervention, we have 
q= 0. In contrast, putting each person 
in complete isolation yields q=1.  Real-
world interventions lie somewhere between 
these two extremes.

Increasing the value of q  has the same 
effect as decreasing b,  in that it both slows 
the rate of exponential growth—stretching 
the epidemic over a longer time period—
and lowers the peak. We now see that 
the zero-infection equilibrium is stabilized 
when ( ( )) ( ) / .1 1 0− ≤q t S t R  Considering 
our example value of R0 4= , reducing 
contact by 50 percent means that only half 
of the population must now get infected 
before the epidemic will begin to sub-
side. Figure 3 (on page 1) illustrates these 
effects, which reflect the now-well-known 
phrase of “flattening the curve.”

One consequence of exponential growth 
is that interventions are most effective 
when they are imposed before an epidemic 
becomes widespread. For instance, a study 
of the 1918 Spanish flu pandemic found 
that reduced peak rates of infection strongly 
correlated with how early a community 
imposed intervention measures [1].

Exit Strategy
We must remember that the aforemen-

tioned reduced criterion for equilibrium 
holds only as long as the intervention 
persists. When a community reverts to its 
pre-intervention lifestyle, q t( )  returns to 
0. It is extremely difficult to completely 
eliminate a virus on a global scale, and a 
new epidemic will emerge if the suscepti-
ble fraction of the population is higher than 
1 0/ .R  This type of resurgence occurred in 
many U.S. cities during the 1918 Spanish 
flu epidemic — especially in locations 
where strong, early interventions were 
imposed. Figure 4 depicts an example of 
this scenario for COVID-19.

At the moment, humankind is more or 
less unified in a colossal effort to drive 
the spread of COVID-19 to an artificial 
and temporary equilibrium. In the short 
term, this effort seems necessary to prevent 
the disease from completely overwhelm-
ing healthcare systems. But the long-term 
strategy is unclear. A natural question is 
whether intervention is effective in reduc-
ing the eventual toll of an epidemic. Such 
a reduction is limited by the fact that in the 
absence of permanent and broad lifestyle 
changes, we must eventually reach at least 
the herd immunity threshold in which a 
majority of the population has been infect-
ed (and gained immunity). Interventions 
can lessen the amount of epidemiological 
overshoot, but even this effect is limited. 
For the 1918 flu pandemic, studies reveal 
only a very weak—and not statistically 
significant—correlation between interven-
tions and eventual death toll.

Many refinements of the SIR model 
exist, and researchers are applying several 
more detailed mathematical models to the 
current crisis. But the broad strokes of 
this article hold true for any reasonable 
model. While we cannot completely avoid 
the far-ranging consequences of this viral 
outbreak, mathematical modeling will help 
us know what to expect and how to prepare 
for and handle it.

The figures in this article were provided 
by the author.
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Figure 4. Scenario with a second outbreak after intervention is lifted.
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In October 2019, the American 
Association for the Advancement of 

Science (AAAS) elected 443 of its members 
as AAAS Fellows. This designation reflects 
the Fellows’ efforts to advance science and 
its applications to better serve society. The 
Fellows collectively span the AAAS’s 24 
different sections, and seven members of 
SIAM were honored as 2019 Fellows within 
the Section on Mathematics:

• David M. Bressoud, Macalester College
• Lisa J. Fauci, Tulane University
• John S. Lowengrub, University of   
  California, Irvine
• Michael J. Miksis, Northwestern 
  University
• Kavita Ramanan, Brown University
• Jinchao Xu, Pennsylvania State 
  University
• Kevin Zumbrun, Indiana University
To be considered for the rank of Fellow, 

an AAAS member must be nominated by 
three previously elected Fellows, the steer-
ing group of an AAAS section, or the orga-
nization’s chief executive officer. Nominees 
undergo a two-step review process.

All incoming Fellows were recognized 
at the 2020 AAAS Annual Meeting, which 
took place this February in Seattle, Wash. 
Several of the honorees in the Section on 
Mathematics shared their thoughts and reac-
tions with SIAM News.

David M. Bressoud: “I am very honored 
to have been elected as an AAAS Fellow. I 
admire their work as advocates for science, 
particularly all that they do to advance 
science and mathematics education, and 
I have been especially impressed by their 

Seven SIAM Members Elected as AAAS Fellows

Jinchao Xu: “Given the abundant 
resources in advanced computers and big 
data nowadays, mathematics is becoming 
increasingly important in science. As a 
computational mathematician, I am grate-
ful for this recognition of my research, 
which provides bridges and tools that con-
nect mathematical applications to differ-
ent branches of science through analysis, 
modeling, data, and simulations. The AAAS 
offers an ideal platform to enhance interac-
tions and collaborations between mathema-
ticians and scientists in other fields.”

Kevin Zumbrun: “I am deeply honored 
by the AAAS’s recognition of my work. It is 
particularly meaningful to me that it comes 
from a society concerned with science across 
all fields, and one with which mathematics 
has traditionally not been so much associat-
ed. As mathematicians, we are all scientists; 
as applied mathematicians, exchange with 
other sciences is both goal and inspiration. 
Representation in the AAAS facilitates this 
exchange in both directions while simul-
taneously providing a voice in the larger 
exchange between science and society.”

leadership on issues of equity. I am proud 
to be part of this organization.”

Lisa J. Fauci (current SIAM presi-
dent): “I was so pleased and honored to 
be named an AAAS Fellow! The AAAS is 
an organization that unites all of science, 
advocates for responsible science policy 
worldwide, and promotes scientific integ-
rity. In recognizing members of the SIAM 
community, it asserts that applied math-
ematics and scientific computation are 
central to the scientific endeavor.”

Michael J. Miksis: “The AAAS’s mem-
bership encompasses the whole scientific 
and engineering community. Receiving 
recognition there is both an honor and a 
reminder that applied mathematics is a 
central and important part of the scientific 
and engineering enterprise. Enhancing our 
interactions with this diverse community 
helps us identify how applied mathemat-
ics can make significant contributions to 
problems facing society today.”

Kavita Ramanan: “I am deeply humbled 
by this honor. Given the interdisciplinary 
nature of some of my own research in prob-
ability, I particularly value an organization 
like the AAAS, which unites researchers 
from different disciplines. I enjoyed attend-
ing talks outside my field at the AAAS 
Annual Meeting, some of which triggered 
new mathematical research questions, and 
hope that the math talks were of similar 
value to scientists. This recognition is even 
more special given that the broader goals 
of the AAAS—notably science advocacy and 
communication, international cooperation, 
and equity—align closely with my own.”  

Steven Chu, then-president of the American Association for the Advancement of Science 
(AAAS), inducts SIAM president Lisa Fauci (left) as a member of the 2019 class of AAAS 
Fellows during the 2020 AAAS Annual Meeting, which took place this February in Seattle, 
Wash. Photo courtesy of Robb Cohen Photography & Video. 

Nevertheless, the SARS-CoV main prote-
ase is relatively well-studied. Roughly 119 
three-dimensional (3D) X-ray crystal struc-
tures of the SARS-CoV or SARS-CoV-2 
main protease and its ligand complexes are 
in the Protein Data Bank (PDB),1 and the 
binding affinities of more than 277 potential 
SARS main protease inhibitors are available 
in the ChEMBL database.2 Additionally, 
there are 17,679 protein-ligand complexes—
with binding affinities and 3D X-ray crystal 
structures—in the PDBbind 2019 general 
set. Moreover, the DrugBank3 contains about 
1,600 drugs approved by the U.S. Food 
and Drug Administration (FDA), as well as 
nearly 6,000 experimental drugs. The afore-
mentioned data provides a sound foundation 
for an SBDR machine learning model for 
SARS-CoV-2 main protease inhibition.

After selecting an appropriate target for 
COVID-19 drug repositioning, the next 

1   http://www.wwpdb.org/
2   https://www.ebi.ac.uk/chembl/
3   https://www.drugbank.ca/

challenge involves accurately screening 
existing drugs from the DrugBank. Over 
the last several decades, researchers have 
developed a wide variety of methods for 
virtual screening. It turns out that math-
ematics-based artificial intelligence (AI) 
approaches were top winners in recent years 
in the D3R Grand Challenge,4 a world-
wide competition series in computer-aided 
drug design that is funded by the National 
Institutes of Health [11, 13]. Essentially, 
although deep learning algorithms—such as 
convolutional neural networks (CNNs)—
can automatically extract features from 
simple data (e.g., images), they do not 
work well for data with intricate internal 
structures. In the case of macromolecules 
with intrinsically complex structures and 
high ML dimensionalities, AI approaches 
must invoke descriptors or representations 
to simplify their structural complexity and 
reduce their dimensionality.

Mathematics is a natural choice for data 
presentation. For example, topology [6]—
especially persistent homology [1, 3]—

4  https://drugdesigndata.org/about/grand-
challenge

offers the so-called topological simplifica-
tion that represents complex protein-drug 
interactions in terms of low-dimensional 
topological invariants or Betti numbers. 
Such invariants can be translational, rota-
tional, and scale invariant, which is a 
requirement of ML [10]. Differential geom-
etry, particularly differentiable manifold, 
provides a sophisticated abstraction of 
high-dimensional data [10]. The interplay 
among differential geometry, differential 
topology, and algebraic topology yields a 
variety of geometric, spectral, and topo-
logical representations [2]. 

Discrete mathematics—such as geomet-
ric graph theory, algebraic graph theory, 
topological graph theory, and combina-
torics—is a prominent apparatus for data 
representation [4, 5, 10]. The integration of 
multiscale, spectral, and topological data 
analysis promises some of the most power-
ful data representations [8, 14]. Figure 1 
(on page 5) depicts the use of mathematical 
representations to (i) construct math-poses 
that recreate 3D structures of protein-ligand 
complexes and (ii) extract math-features 
that contain critical chemical  and biological 
information [13]. We pair math-poses and 
math-features with CNN, generative net-
work complex, and reinforcement learning 
algorithms for protein-ligand pose selec-
tion, binding affinity prediction, ranking, 
scoring, and screening [9, 13].

One can utilize in vitro cell culture tests to 
validate top-ranking existing drugs inferred 
from virtual screening. The toxicities of 
FDA-approved drugs are known, which 
means that researchers can then bypass 
many steps in conventional drug discovery. 
Controlled clinical trials can further test 
the confirmed effective drugs to study their 
antiviral efficacy, dose, and frequency.
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By Zhihua Liu, Pierre Magal, 
Ousmane Seydi, and Glenn Webb

Our team has developed several dif-
ferential equations models of COVID-

19 epidemics [1-3] that use early reported 
case data from around the world to predict 
the future number of cases. These mod-
els incorporate three important elements of 
COVID-19: (1) the number of asymptomatic 
infectious individuals (with very mild or no 
symptoms), (2) the number of symptomatic 
reported infectious individuals (with severe 
symptoms), and (3) the number of symptom-
atic unreported infectious individuals (with 
less severe symptoms). They also decompose 
COVID-19 epidemics into three phases:

• Phase I, during which the number of 
cumulative reported cases increases lin-
early each day

• Phase II, during which the number of 
cumulative reported cases increases expo-
nentially each day

• Phase III, during which the number of 
daily reported cases decreases each day.
The transitions between phases are gener-
ally difficult to determine, but one can 
estimate them from reported cases data as 
time progresses.

Our model consists of the following dif-
ferential equations and initial conditions:
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Here, t t³ 0  is time in days, t0  is the begin-
ning date of the epidemic, S t( )  is the num-
ber of individuals susceptible to infection at 
time t, E t( )  is the number of asymptomatic 
noninfectious (exposed or latent infected) 
individuals at time t, I t( ) is the number 
of asymptomatic but infectious individuals 
at time t, R t( )  is the number of reported 
symptomatic infectious individuals at time 
t, and U t( )  is the number of unreported 
symptomatic infectious individuals at time t.

The time-dependent transmission rate 
parameter is t( ).t  Newly-infected noninfec-
tious asymptomatic individuals E t( ) incu-
bate for an average period of 1/a days. 
Asymptomatic infectious individuals I t( ) 
are infectious for an average period of 1/n  
days. Reported symptomatic infectious indi-
viduals R t( )  are infectious for an average 
period of 1/h  days, as are unreported symp-
tomatic infectious individuals U t( ). We 
assume that reported symptomatic infectious 
individuals R t( )  are reported and isolated 
immediately, and cause no further infec-
tions. One can also view the asymptomatic 
individuals I t( )  as having a low-level symp-
tomatic state. All infections are acquired 
from either I t( ) or U t( )  infectious individ-
uals. The fraction f  of asymptomatic infec-

A Model to Predict COVID-19 Epidemics with 
Applications to South Korea, Italy, and Spain

A COVID-19 epidemic transitions from 
phase I to phase II at time t t1 0> .  Before 
t1, the cumulative number of reported 
cases increases linearly each day. After t1, 
the cumulative number of reported cases 
increases exponentially each day. We esti-
mate the value of t1  from data pertaining 
to the cumulative reported cases. We then 
fit an exponentially growing curve CR t( ) 
to the cumulative reported cases data in an 
estimated time interval [ , ],t t1 2  according to 
the following formula:
   
CR t t t t t( ) exp( ) , .= − ≤ ≤c c c1 2 3 1 2		

		  (2)

We typically set c3 1=  but allow for other 
values. The initial value S0  corresponds to 

the population of the reported cases data’s 
region. The other initial conditions are
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Furthermore, the value of t0  (when 
R t CR t( ) ( )0 0 0= = ) for starting time t0  of 
the epidemic is given by 
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We derive these formulas for I0 , E0 , U0 , 
t0 , t0 , and 0  in [1]; their values con-
nect the phase II reported cases data to the 
parameterisation and initialisation of our 
differential equations model.

During phase II of the epidemic, t t( )t º 0 
is constant. When strong governmental 
measures like isolation, quarantine, and 
public closings are implemented, phase III 
begins. The timing of the implementation 
of these measures—and their subsequent 
impact on disease transmission—is com-
plex. We use an exponentially decreasing 
time-dependent transmission rate t( )t  in 
phase III to incorporate these effects. The 
formula for t( ),t  which has phase III 
beginning on day N ,  is 
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We choose the date N  and intensity u  of 
the public measures so that the cumulative 
reported cases in the epidemic’s numerical 
simulation align with the cumulative report-
ed case data at an identified date after day 
N.  In this way, we can project forward the 
epidemic’s time path after the government-
imposed public measures take effect.

Applications
We apply our model to the COVID-19 

epidemics in South Korea,1 Italy,2 and 
Spain.3 Figure 2 provides the parameters 
for these three countries.

COVID-19 Epidemic in South Korea: 
We divide the epidemic in South Korea into 
four stages (see Figure 3):

(1) Before February 22: Phase I.
(2) February 22 to March 1: Phase II.
(3) March 2 to March 8: Phase III. The 

South Korean government implemented 
extensive testing, isolation, contact tracing 
of confirmed cases, and quarantine policies 

1  https://en.wikipedia.org/wiki/2020_
coronavirus_outbreak_in_South_Korea

2  https://en.wikipedia.org/wiki/2020_
coronavirus_outbreak_in_Italy

3  https://en.wikipedia.org/wiki/2020_
coronavirus_outbreak_in_Spain

tious cases becomes reported symptomatic 
infectious, and the fraction 1- f  becomes 
unreported symptomatic infectious. The 
rate at which asymptomatic infectious cases 
become reported symptomatic is n n1= f , 
and the rate at which asymptomatic infec-
tious cases become unreported symptomatic 
is n n2 1= −( ) ,f  where n n n1 2+ = .

The cumulative number of reported cases 
CR t( )  at time t  is

  
     CR t I d t t

t

t
( ) ( ) , ,= ≥∫ν σ σ1 0

0

the cumulative number of unreported cases 
CU t( )  at time t  is

     CU t I s ds t t
t

t
( ) ( ) , ,= ≥∫n2 0

0

and the daily number of reported cases 
DR t( ) at time t  is

            DR t I t DR t′ = −( ) ( ) ( ),n1     
              t t DR t DR≥ =0 0 0, ( ) .

Figure 1 depicts a flow diagram of the model.

Parameters
The fraction f  of total reported symp-

tomatic infectious cases is unknown and 
varies from region to region. We assume 
that h=1 7/ ,  which means that the aver-
age period of infectiousness of both unre-
ported and reported symptomatic infectious 
individuals is seven days. We also assume 
that n=1 6/ , which means that the average 
period of infectiousness of asymptomatic 
infectious individuals is six days. Finally, 
we assume that a=1, which means that 
the average period of exposed individu-
als is one day. We can modify these val-
ues as further epidemiological information 
becomes available; as of early April, they 
were consistent with accepted values.

Figure 1. Compartments and flow chart of the model.

Figure 3. Model simulation for South Korea. 3a. Cumulative reported cases. The shaded region = phase II and the model turning point is March 
5. 3b. Daily reported cases. The model turning point is March 2.

Figure 2. We obtain the parameters c c1 2,  by fitting c c1 2 1 0exp( ) .t -  to the cumulative reported cases data between the dates [ , ]t t1 2  for 
each country: (1) t1=February 22 to t2=March 1 for South Korea, (2) t1=March 12 to t2=March 21 for Italy, and (3) t1=March 13 to t2=
March 21 for Spain. The values I U t0 0 0 0, ,, ,t  and 0  are obtained via equations (3)-(6). The parameters n=1 6/ ,  h=1 7/ ,  a=1 1/ ,  c3 1 0= . , 
and R0 1 0= .  for all three countries.   

See COVID-19 Epidemics on page 12
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With bicycle season beginning in the 
Northeastern U.S., I would like to 

describe a small bike-related observation. 
It actually has nothing to do with a bicy-
cle’s mechanics; it simply occurred to me 
when I was riding my bike last fall. While 
climbing up a steep incline and observing 
a stream by the roadside, I asked myself 
the following question: The water in any 
collection of connected vessels settles to 
the state of least potential energy; what is 
a mathematical expression of this obvious 
fact? For cylindrical vessels it turned out 
to be the Cauchy-Schwarz inequality, as 
described in the November 2019 issue of 
SIAM News1 (and in [2]). For polynomi-
ally tapered vessels, the expression yields 
Hölder’s inequality [3].

These inequalities are therefore special 
cases of what every child knows: water 
levels equalize in communicating vessels. 
What other theorems are hiding behind 
this simple fact? In this month’s column I 
provide one simple consequence; it would 
be interesting to discover more.

1  https://sinews.siam.org/Details-Page/
the-cauchy-schwarz-inequali ty-and-a-
paradoxpuzzle

Lagrange Multiplier as Depth or Pressure
subject to the constraint

  G x x f x dxn k

x

k

n
k

( , , ) ( ) .1 01

1… = =∫∑
= 				     

(2)

To interpret this problem2 physically, 
imagine n  vessels (as in Figure 1) with 
valves closed and the k th  vessel filled 
with water of depth xk .  The sum (1) is 
thus the system’s total potential energy (we 

choose the units in which the 
water density and gravita-
tional accelerations are one 
unit). And (2) prescribes the 
total volume of water. Now 
as we open the valves in 
Figure 1, the potential ener-

gy F  settles to its least value, which also 
corresponds to equal levels:

           x x k l nk l= ≤ ≤1 , . 	  (3)
				  
The total volume G  remains unchanged dur-
ing the redistribution. This solves the prob-
lem: the minimizer is given by (3) and (2).

To verify the answer, the Lagrange multi-
pliers method ∇ = ∇F Gl  yields

 	
x f x f xk k k( ) ( ) ,=l

so that xk =l  for all k n= …1, , .  As we 
already know, the levels of water equalize. 
But we now discover that the Lagrange 
multiplier l  is the common water level, 
or equivalently, the water pressure at the 
bottom of the vessels.

2  To be more precise, we must assume 
that fk  are such that the constraint (2) is even 
satisfiable. I also probably should have said in 
fine print that f Lk Î

1,  but I’ll leave out these 
distracting details.

As a side remark, this problem gener-
ates the aforementioned inequalities for 
special choices of fk .

Problem 2 (A Generalization) 
Let pk : , + +→  1£ £k n  be mono-

tone increasing functions, and let fk  be as 
it was before. Minimize

 
     F p x f x dxk

x

k

n

k

k

1 01

( ) ( ) ( ) ,x = ∫∑
=

subject to the same previous constraint 
(2). The Lagrange multiplier method 
∇ = ∇F G1 l  produces

	        p xk k( ) .=l

I leave it as a puzzle to build a thought-
experimental “analog computer” that 
results in this answer and gives a physical 
interpretation of l.
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Incidentally, all of this—the Cauchy-
Schwarz and Hölder inequalities, as well 
as the observation below—are, in the final 
analysis, consequences of the law of con-
servation of energy. Indeed, assume for a 
moment that water in communicating ves-
sels settles at different levels. Then build a 
trough from the higher level to the lower 
one. The water will flow down this trough, 
and forever so due to the assumption, pro-
viding a free source of energy 
— a contradiction proving that 
the water settles at the same 
level, and also that this level 
minimizes potential energy.

As an aside, quite a few other 
geometrical theorems result 
from the impossibility of the perpetual 
motion machine [1].

Problem 1
Here is another problem that can be 

solved by the communicating vessels idea.
Given n  functions fk : , + +→   
k n= …1, ,  minimize the sum
   

F x x xf x dxn

x

k

n

k

k

( , , ) ( ) ,1 01

… = ∫∑
=

	  (1)   

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 1. f xk ( ) is the area of the horizontal cross-section at height x  of the kth vessel. 
Figure courtesy of Mark Levi.
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after February 20. These measures took 
effect in daily reports after March 2.

(4) After March 8: The daily reported 
cases remained approximately the same 
each day, and the cumulative reported cases 
increased linearly. This stage corresponds to 
a new phase I, with a low-level background 
generation of reported cases each day.

To account for this new phase, we 
modify model (1) by replacing t( )t  
with a novel transmission function 
t( , ( ), ( ), ( ))t S t I t U t  that depends on t, 
S t( ), I t( ), and U t( )  as follows:

				     
(8)

t t
t t
( , ( ), ( ), ( )) , ;
( , ( ), ( ), ( )) exp
t S t I t U t t t
t S t I t U t

= ≤ ≤
=

−

0 0

0

27

0.. , ;

( , ( ), ( ), ( )) . exp
.
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0

t t

t S t I t U t
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
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
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We select the value 23.0 to match the 
slope of the linear increasing cumulative 
reported cases data after day 37. The equa-
tions and initial values remain the same, 
with the exception of this novel t  function. 
The formulas in (8) connect the new phase I 
to the transmission rate in the model equa-
tions and the model outputs of E t( ), I t( ), 
U t( ), R t( ), CU t( ), CR t( ), and DR t( ). One 
can apply the form of (8) to other examples 
that transition from phase III to a new phase 
I, corresponding to a linearly-increasing 
growth rate of cumulative reported cases. 
This new phase I can further transform to 
yet another phase I with a slower linearly 
increasing growth rate.

COVID-19 Epidemic in Italy: We 
divide the epidemic in Italy into three 
stages (see Figure 4):

(1) Before March 12: Phase I.
(2) March 12 to March 21: Phase II.
(3) After March 24: Phase III. Beginning 

on March 1, the Italian government imple-
mented extensive public regional lockdown 
measures, which were extended to all of 
Italy on March 10. These measures started 
to reduce the number of reported daily cases 
approximately two weeks later.

COVID-19 Epidemic in Spain: We 
divide the epidemic in Spain into three 
stages (see Figure 5):

(1)  Before March 13: Phase I.
(2)  March 13 to March 21: Phase II.
(3) After March 28: Phase III. The 

Spanish government implemented par-
tial shutdown measures on March 13 and 
imposed a general state of alarm for all of 
Spain on March 14. These measures started 
to reduce the number of reported daily cases 
approximately two weeks later.

Concluding Thoughts
We have applied a new method [1-3] to 

predict a COVID-19 epidemic’s evolution 
in a particular geographical region, based 
on reported cases data from that region. 
Our model focuses on unreported cases, 

asymptomatic infectious cases, and divi-
sion of the epidemic’s evolution through 
a succession of phases. Our method can 
be predictive when the epidemic is grow-
ing exponentially in phase II. Specifically, 
we demonstrate a technique to identify the 
exponentially increasing rate of cumula-
tive reported cases in phase II [3]. When 
public measures to ameliorate the epidemic 
begin during this phase, we model these 
measures with a time-dependent exponen-
tially decreasing transmission rate. These 
mitigations result in phase III: a subse-
quent reduction in daily reported cases. We 
determine the transition from phase II to 
phase III—which may require more than a 
week—in the model simulations.

The epidemic has attenuated in South 
Korea because of major measures that 
encourage social distancing. These measures 
involve surveillance, extensive testing, and 
isolation and contact tracing for reported and 
suspected cases. However, the cumulative 
number of reported cases in South Korea has 
not flattened; instead, it is growing linearly at 
a low rate. The epidemics in Italy and Spain 
have evidently passed the turning point, 
according to data about the daily reported 

cases. The cumulative reported cases may 
not flatten but instead continue to grow lin-
early at a low rate, as in South Korea.

Our model incorporates government 
and social distancing measures through the 
time-dependent transmission rate t.  These 
measures should begin as early as possible 
and be as strong as possible. If such efforts 
cause the epidemic to substantially subside, 
the situation in South Korea indicates that a 
background level of daily cases may persist 
for an extended time. If countries reduce 
major distancing measures too early or too 
extensively, the epidemic can enter a new 
phase II and undergo another exponential 
increase in cumulative cases. Control of 
COVID-19 epidemics is possible, as evi-
denced by the situation in South Korea. The 
future of COVID-19 and its human toll is 
currently uncertain, and we hope that math-
ematical models will be of use.

The figures in this article were provided 
by the authors.
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Figure 5. Model simulation for Spain. 5a. Cumulative reported cases. The shaded region = phase II and the model turning point is April 4. 5b. 
Daily reported cases. The model turning point is March 30.

Figure 4. Model simulation for Italy. 4a. Cumulative reported cases. The shaded region = phase II and the model turning point is March 31. 4b. 
Daily reported cases. The model turning point is March 26.

By Ben Kallen

On February 10, 2020, President Trump 
released his fourth budget proposal to 

Congress. The fiscal year (FY) 2021 bud-
get request reflects the political priorities 
of the Trump administration and kicks off 
the congressional appropriations process.

As with prior years, the request proposes 
drastic cuts to many of the non-defense fed-
eral agencies of interest to SIAM; increases 
to defense spending remain the adminis-
tration’s top priority. Consistent with the 
two-year budget agreement that was signed 
into law last year, the budget proposes 
spending $740.5 billion on defense — a 
$2.5 billion increase over the enacted level 
of FY 2020. In contrast, non-defense pro-
grams would be funded at $590 billion, 
which is a cut of seven percent below cur-
rent spending and far beneath the FY 2021 
cap of $634.5 billion that Congress estab-
lished in last year’s budget deal.

While Congress will decide final funding 
levels for FY 2021 and likely reject many 

Budget and Appropriations Outlook for FY 2021
• The Department of Energy’s Office of 

Advanced Scientific Computing Research 
(ASCR) would be funded at $988.1 mil-
lion in FY 2021, which is a 0.8 percent 
or $8.1 million increase from the FY 
2020 enacted level. The Mathematical, 
Computational, and Computer Sciences 
Research account of the ASCR would 
receive $264 million, an increase of 70 
percent or $109 million above FY 2020. 
This growth is driven by the ASCR’s 
interest in shifting its agenda toward 
more future-focused research activities in 
emerging areas like AI/machine learning 
(ML) and quantum computing.

• The Department of Defense’s basic 
research programs would be funded at 
$2.32 billion in FY 2021, a 10.9 percent 
or $284.2 million cut from the FY 2020 
enacted level. The administration justifies 
these proposed reductions based on the 
need to reprioritize funding to support more 
substantial investments in national security 
priority areas such as AI/ML, hypersonics, 
microelectronics/5G, and space.

• The National Institutes of Health (NIH) 
would be funded at $38.7 billion in FY 
2021, a 7.2 percent or $3 billion cut below 
the FY 2020 enacted level. Despite these 
planned reductions, the administration has 
proposed a new $50 million initiative in 
the use of AI/ML to deepen understanding 
of the underpinnings of chronic diseases 
and identify promising treatments for these 
conditions. In the first year of this effort, 
the NIH would develop key AI and com-
putational data resources, as well as new 
career pathways for recruiting and training 
investigators who work at the intersection 
of AI, data science, and biomedicine.

SIAM will continue to stay abreast of 
the FY 2021 appropriations cycle and its 
impact, advocate for strong funding for 
applied mathematics and computational sci-
ence programs at relevant agencies, and 
keep members informed.

Ben Kallen is a government relations 
associate at Lewis-Burke Associates LLC.

proposed cuts, the budget request still pro-
vides a useful window into major adminis-
tration priorities, some of which have bipar-
tisan support. For example, there is broad 
bipartisan support for increased investments 
in science and technology, especially in 
“Industries of the Future”—such as artifi-
cial intelligence (AI) and quantum informa-
tion science—to maintain U.S. leadership 
and competitiveness.

The subsequent details describe how 
SIAM’s priority agencies would fare under 
the aforementioned request:

• The National Science Foundation (NSF) 
would be funded at $7.74 billion in FY 
2021, a 6.5 percent or $537 million cut 
below the FY 2020 enacted level. Within 
the NSF, the Division of Mathematical 
Sciences (DMS) would experience a reduc-
tion of 9.4 percent below the FY 2019 level 
for a total of $214.8 million. The DMS is 
the source of more than 60 percent of all 
federal funding for mathematical research 
(FY 2020 funding figures for NSF director-
ates and divisions are not yet available).

COVID-19 Epidemics
Continued from page 10


