
Mathematics in Industry Reports (MIIR) 1

Model Inversion for Complex Physical
Systems Using Low-Dimensional Surrogates

Jimmie Adriazola 1,Manuchehr Aminian 2,Pau Batlle 3,Changqing

Cheng 4,David A. Edwards 5†, Taras Lakoba 6 and Olivia Pomerenk 7

1 University of California, Santa Barbara; Santa Barbara, CA, USA
2 Cal Poly Pomona; Pomona, CA, USA

3 California Institute of Technology; Pasadena, CA, USA
4 State University of New York at Binghamton; Binghamton, NY, USA

5 University of Delaware; Newark, DE, USA
6 University of Vermont; Burlington, VT, USA
7 New York University; New York, NY, USA

(Communicated to MIIR on January 8, 2024)

Study Group: Mathematical Problems in Industry Workshop, New Jersey Institute of Tech-

nology, June 12–16, 2023

Communicated by: Linda Cummings

Industrial Partner: Pacific Northwest National Laboratory

Presenter: David A. Barajas-Solano

Team Members: Charlotte Beckford, University of Tennessee; Arum Lee, Penn State; Richard

McQueen, Rensselaer Polytechnic Institute; Arnab Roy, University of Delaware; Gaohui Zhang,

University of Minnesota

Industrial Sector: Environment

Key Words: Model reduction; model inversion; inverse regression; contaminant transport.

MSC2020 Codes: 62J02, 62H12, 35B30.

Summary

In order to predict groundwater contamination levels, it is necessary to

estimate the transmissivity field which governs contaminant transport.

It is often prohibitively expensive to solve the underlying Darcy flow

equations as a direct solver in a parameter-fitting process. The number

of input parameters can be reduced to just a few using linear or non-

linear techniques. The dependence of the (measured) pressure on those

input parameters can be likewise reduced to a simple functional form.

These reductions greatly speed the computation while preserving accu-

racy. Discussion of more complicated dimension reduction techniques

(as well as neural network implementation) are also presented.

† Corresponding Author: dedwards@udel.edu



2 Adriazola et al.

1 The General Problem

Hanford Site

I DOE is responsible for the Hanford Site, “one of

the largest cleanup efforts in the world, managing

the legacy of five decades of nuclear weapons

production”

I Calibrating groundwater flow and contaminant

transport models of the Hanford Site is crucial for

evaluating remediation strategies and performing

exposure assessments

I A network of sparsely-distributed observation wells

collect measurements of hydraulic pressure and

tracer breakthrough curves from tracer

experiments

2
Figure 1. Schematic of Hanford site (from [17]).

In order to predict contaminant levels in groundwater at the Hanford waste site, sci-

entists need a model for the steady-state velocity profile q(x) of the groundwater. The

velocity profile is affected by the transmissivity field T (x), which describes how the vari-

ous material characteristics of the soil, etc., affect the fluid flow. It is this transmissibility

field we wish to estimate.

The function T (x) can be decomposed in the following way:

log T (x) ≡ ytm + y(x), y(x) = m(x) +

Nξ∑
k=1

ξkψk(x), (1.1)

where ytm is the “total mean” of log T over x, m(x) is a centering function, the ψk(x) are

basis functions, and the ξk are weights. This is known as the Karhunen-Loève Expansion

(KLE) [6, §16.12].

These functions are presumed known, and hence the dependence of q on T can be

replaced by dependence on the weight vector ξ, where ξ ∈ RNξ . Hence our optimization

problem becomes one of choosing the best ξ so that our computed transmission field

matches the true T (x).

Unfortunately, we have no direct measurements of T or even q. However, the velocity

can be computed in a straightforward manner from the pressure u(x; ξ), and it is that

quantity which we wish to study. In particular, the pressure profile satisfies the Darcy



Model Inversion Using Low-D Surrogates 3

flow system

−∇ · (T (x)∇u(x)) = 0, x ∈ Ω, (1.2)

u(x) = u1(x) x ∈ ∂Ω1,

∂u

∂n
= u2(x) x ∈ ∂Ω2,

where ∂Ω = ∂Ω1 ∪ ∂Ω2. The problem cannot be solved analytically because of the

complicated domain (see Fig. 1), so one may use a finite-volume approach and calculate

the pressure within Nc cells (for actual values, see the Appendix).

The weights ξ are unknown, so we must estimate them based on experimental mea-

surements. We do not have measurements in all the cells, just the ones that have wells in

them where measurements can be taken. We then construct a vector u(ξ) ∈ RNw whose

components are the values in only those cells for which we have observations. Here and

throughout the subscript “w” stands for wells.

Formally, we would then solve

ξ∗ = argmin
ξ

||uw − u(ξ)||, (1.3)

where uw is the experimental data at the well sites. Unfortunately, the problem as stated

is poorly conditioned, as different values of ξ can yield similar values of u. Hence we

introduce a regularization term:

ξ∗ = argmin
ξ

||uw − u(ξ)||+ γR(ξ), (1.4)

where γ > 0 is a regularization parameter and R is a regularization function which

penalizes unwanted behavior. Typical forms for R include

||ξ||, ||y||, ||
−−→
∇xy||. (1.5)

Here y is a vector of discrete values of the log-transmissivity field y and in the last term

we penalize discrete values of the gradient of the y field.

The ideal way to do the minimization would be to use (1.2) to calculate u given ξ,

and then optimize as described. Unfortunately, this is incredibly expensive computa-

tionally given the complicated nature of the domain in Fig. 1. Hence we want to create

low-dimensional models that can still capture enough of the behavior to provide good

estimates for ξ. In the next five sections, we discuss various procedures and implementa-

tions to perform such model reduction. The final section before the conclusion provides

a more theoretical discussion of more complicated model reduction methods.

2 Breaking Up the Problem: Basic Algorithms

Unfortunately, the number of cells and weights is quite large, which causes lengthy cal-

culations. Therefore, we reduce the number of parameters to be estimated by assuming

that for each cell j,

u(ξ) ≈ f(η(ξ); c), (2.1)



4 Adriazola et al.

where η is a simplified weight vector and c is a small number of parameters describing

the behavior of f . Note that these vectors must be found (and may be different) for each

j; however, for notational simplicity we suppress that dependence for now.

Importantly, the vector η is assumed to be of much smaller dimension than ξ (reducing

the complexity of the independent variable). Since the forward solver is expensive, this

saves significant computational work when (in the final step) we optimize over ξ. In

fact, in the work done at the workshop, we assumed η to be a scalar (see (2.2) below).

Techniques to extend this to more dimensions Nη ≪ Nξ are considered in §7.
Each of the above steps must be done optimally. Therefore, we break up the optimiza-

tion into discrete steps as follows.

2.1 Finding η

Figure 2. Schematic of u variation and associated â.

First consider how u at a particular point xj depends on the parameters ξ. For sim-

plicity of illustration, we take Nξ = 2 and plot a typical profile in Fig. 2. For any point on

the line shown, variations in u along the line are much greater than those perpendicular

to it. Hence the specific values of ξ are not as important as the distance along the line

shown.

How this would look for particular measurements is shown in Fig. 3. If we look at the

observable u vs. ξ1, we may see no discernible pattern. But if we look at distance along

the line η1, we see a definite trendline.

Therefore, if we define the unit vector in that direction as â, then η just becomes the



Model Inversion Using Low-D Surrogates 5

Ridge function models

For the linear scalar observable response g̃(ξ) = b+ 〈a, ξ〉, its variation is restricted to the

one-dimensional linear subspace span{a}, so that

g̃(ξ) = b+ ‖a‖η, η = 〈â, ξ〉 , â := a/‖a‖

Based on this observation, we assume that the

variation of g̃ is mostly over a r-dimensional

subspace V with r � Nξ (and that its variation

over V ⊥ can be disregarded). We consider the

ridge function model

g̃(ξ) ≈ f(Aξ)

where the rows of the rotation matrix A, â1, . . . , âr
form an orthonormal basis for V (so that

AA> = I), and f(·) is a r-dimensional nonlinear

regression function

1. Find the rotation matrix A

2. Find the regression function f(·)

11

4 3 2 1 0 1 2 3 4

118.8

119.0

119.2

119.4

119.6

119.8

u

Rotated Data for Last Well Position

Figure 3. Trendline emerges when plotting against proper variable.

scalar projection of the corresponding value of ξ along that line:

η = âT ξ, â ∈ RNξ . (2.2)

Hence we have reduced the dimension of the independent variable fromNξ to 1. Therefore,

this part of the problem reduces to finding the optimal value of â for each cell.

The direction of greatest change is parallel to the gradient vector, so we have a = ∇ξu.

Therefore, if a were constant, we could write

u = aT ξ + b, (2.3)

where b is a constant. a is not a constant, but we can determine a value good for each

cell by doing a least-squares fit of (2.3). Note that this is a relatively quick computation

since the right-hand side is linear.

Therefore, we construct Nr different choices of ξ (here the subscript “r” denotes “re-

alization”). We denote each realization by ξ(i), and using the forward solver determine

the computed pressure u(i) at each point. We then wish to find the vector a which is the

best least-squares fit of

u(i) = aT ξ(i) + b, i = 1, 2, . . . , Nr. (2.4)

(Though we will obtain the constant b as part of our fitting procedure, we will never use

it.)

At this point it is now convenient to include the dependence on the well number j

explicitly. We define uj to be the vector whose ith component is u(xj ; ξ
(i)), so uj ∈ RNr .

Similarly, we define Ξ to be the matrix whose ikth entry is ξ
(i)
k (or equivalently, whose

ith row is ξ(i)). Then the above least-squares problem can be written as

uj = Ξaj + bj1, Ξ ∈ RNr×Nξ , 1 ∈ RNr . (2.5)

The resulting best-fit vector aj can be normalized to construct âj , and we may define

ηj = âT ξ. (2.6)

Moreover, this process can be streamlined even further. Define U to be the matrix

whose jth column is uj , and similarly for A. Define b such that its jth entry is bj . Then



6 Adriazola et al.

(2.5) can be rewritten as

U = ΞA+ 1bT ; U ∈ RNr×Nw , A ∈ RNξ×Nw , b ∈ RNw . (2.7)

We then can find the best-fit matrix A all at once...in theory. In practice, it seems that the

default scipy linear fitting algorithm takes only vectors as left-hand sides, not matrices.

So it may be better to use (2.5) for each j. Alternatively, we may use the normal equation

approach by rewriting (2.7) as

U =
(
Ξ 1

)( A

bT

)
≡ Ξ̃Ã

Ξ̃TU = Ξ̃T Ξ̃Ã

Ã = (Ξ̃T Ξ̃)−1Ξ̃TU. (2.8)

Once A has been found, it is straightforward to find the desired vectors â. We normalize

each column of A, and let Â to be the matrix whose jth column is âj . Then since (2.2)

is defined for all j, we may combine all those values to form the new equation η = ÂT ξ,

so η ∈ RNw , and Nw < Nξ.

2.2 Finding f and c

4 3 2 1 0 1 2 3 4

108

109

110

111

112

113

114

u

Rotated Data and Cubic Polynomial Fit for Position 193
Simulated Well Data
Predicted Well Data

Figure 4. Best-fit cubic curve.

Now that η has been defined, we can find the optimal f to approximate the pressure.

Again, this computation must be done for each observation point. To do this, we first posit

a functional form for f . The first form suggested was a third-order Hermite polynomial,



Model Inversion Using Low-D Surrogates 7

but this is functionally equivalent to a standard cubic:

f(η; c) =

3∑
k=0

ckη
k. (2.9)

(Note that we use the same index k, since the ck play the role of weights in this equation.)

In this case, we need fit only the four constants ck to obtain the best-fit curve (see Fig.

4). This type of fit can be handled easily by the numpy function polyfit.

Mathematically, it is fast because it is a linear fit, for if we define the matrix M as

follows:

Mik = [η(i)]k−1, M ∈ RNr×4, (2.10)

then this optimization problem can be written in the following least-squares format:

uj =Mcj , (2.11)

which is done at each j. Similar to before, we may define a matrix C whose jth column

is c, which yields

U =MC, C ∈ R4×Nw . (2.12)

Given that we already have the expression (2.3), why not just do a linear fit for f

instead? From the theoretical perspective, we expect that u will be bounded by certain

values (namely the boundary conditions), and in theory a linear profile could exceed

those bounds for extremal η. We present more details of other possible forms in §3.2.

2.3 Finding ξ∗

Now that we have completed the first two parts, (1.4) can be rewritten as

ξ∗ = argmin
ξ

||uw − f(ÂT ξ; c)||+ γR(ξ), (2.13)

which should be much faster to calculate than using a forward solver of (1.2) to calculate

u. (Again we would use a nonlinear optimization subroutine.) As a first attempt, we

solve the minimization with γ = 0 (no regularization). We know this problem will be

very ill-posed: since Nw < Nξ, we have (over 600) more unknowns than equations. Hence

in later sections we will introduce regularization.

As a first visualization of performance, we plot the predicted values of u vs. the reference

value in Fig. 5.

Recall that the true quantity we estimate is T (x). Therefore, our optimization proceeds

as follows. We were given a reference field yref(x), whose values are illustrated in Fig.

6. Given yref(x), we can use the provided forward solver to compute uw given that

transmissivity field. We then optimize using (2.13) and use those values of uw to obtain

a ξ∗, which we then substitute into (1.1) to find a comparable estimate for yw, the

measured transmissivity field at the well sites.

The results are shown in Fig. 7. In this case, ξ∗ was calculated using no regularization.

To calculate the error, we use the following quantity:

transmissivity error =
||yw − y(ξ)||
||yw + ytm1||

. (2.14)



8 Adriazola et al.

105 110 115 120 125
uref

105

110

115

120

125

u p
re

d

Predicted u vs. reference uref

Prediction
Exact

Figure 5. Scatter plot showing performance of algorithm in estimating u.

The numerator is the standard error we expect. The denominator is a normalization

factor against the true log T , which is the sum of y and the total mean.

3 Breaking Up the Problem: Extensions

Each of the steps outlined in §2 is quite basic, and can be improved (though with increased

computational time). We outline some possibilities below:

3.1 Finding η

Another way to calculate η would be to add a quadratic term. We choose the simplest

possible choice by replacing (2.3) with

u = aT ξ + ξTΛξ + b, (3.1)

where Λ is a diagonal matrix. This is a quadratic fit, and perhaps there’s a Python

command for that. However, given the results in the next section showing a linear function

is best, it probably would not improve things appreciably to add this complication, as

this is related to using a quadratic as a form for f .



Model Inversion Using Low-D Surrogates 9

yref

8

6

4

2

0

2

4

6

Figure 6. Reference y field to be fit.

ycomp

8

6

4

2

0

2

4

6

y = ycomp yref, error = 0.298

8

6

4

2

0

2

4

6

Figure 7. Left: Calculated y. Right: Error in calculation.



10 Adriazola et al.

3.2 Finding f and c

The reason why a cubic was chosen as our first attempt for f was so that it could

“saturate” for high values of η (see Fig. 4). Of course, it will also eventually decline, and

for reasons related to the equation solved, u should be monotonically increasing in η.

But perhaps a cubic is not even needed. Therefore, rather than using (2.9), we use a

different degree polynomial. Then motivated by (2.11), we compute the following error:

error =
1

NwNr

Nw∑
j=1

||uj −Mcj ||. (3.2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
degree

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

er
ro

r

Error in Polynomial Fit vs Degree

Figure 8. Error in (3.2) vs. degree.

This error is plotted in Fig. 8. One can clearly see that there is only minimal error

reduction for degrees beyond 1. Hence a linear fit is acceptable, and using the cubic would

seem to be just a waste of computational resources.

Another method we investigated was fitting the data to a sigmoid curve (also known

as a hyperbolic tangent) instead, using scipy’s curve fit function. Nonlinear fitting is

more costly than linear fitting, but the sigmoid form is uniquely well-suited to capture

the saturation effect because of its upper asymptote. The general form sigmoid we used

is

f(η; c) = c0 +
c1

1 + e−(x−c2)/c3
. (3.3)

As long as c3 is positive, the sigmoid has a left asymptote at y = c0 and a right asymptote

at y = c0 + c1. In order for the curve fit function to work, it requires initial guesses

for each of the parameters—these do not have to be particularly close, but merely have

to set the algorithm in the right neighborhood of parameter space. We gave it the guess



Model Inversion Using Low-D Surrogates 11

that c0 is the smallest u value, c0 + c1 is the largest u value, c2 is the median value of η,

and c3 is half the range of the η values.

Figure 9. Sigmoid fit to data.

Using mean square error (MSE) as a metric, the sigmoid does not perform meaningfully

better than a cubic, which is itself comparable to a linear fit under MSE. However, the

sigmoid has the attractive properties that it is monotonic and will be bounded even if

given a value of η near the edge of the range. By comparison a different form of fitted

curve may give predictions for u that are too high (in the case of a line) or too low (in

the case of a cubic that turns downward) in this case. We can see an example of this in

Figs. 9 and 10. The sigmoid tapers off to the saturation value at the edge of the range,

whereas the cubic begins to arc downward.

4 Fixing the Estimation

4.1 Regularization

In order to improve the calculation of ξ∗, we choose a proper form for R to eliminate

“undesirable” behavior. Unfortunately, there are philosophical disagreements as to what

is most “undesirable”. As a first step, we set R(ξ) = ||ξ||, so (1.4) becomes

ξ∗ = argmin
ξ

||uw − u(ξ)||+ γ||ξ||. (4.1)

In Fig. 11 we plot how the mean-squared error in y varies with the regularization

parameter. As one can see, when the parameter is 0, the MSE is large. However, as



12 Adriazola et al.

Figure 10. Cubic fit to data.

Figure 11. Error in y vs. γ, unweighted case.

the parameter increases, the MSE also increases. Therefore, this means that we need a

regularization term, but only a small one.



Model Inversion Using Low-D Surrogates 13

4.2 Weighting

Despite the fact that we are getting reasonably good estimates for u, the estimates for

y are still pretty bad. Another possibility would be to weight the individual well sites.

Though somewhat hard to see from Fig. 1, the wells are clustered in certain locations,

and spaced widely in others. It would seem natural that if we are able to match the

pressure at one well, we would do a pretty good job estimating the pressure at nearby

wells.

Therefore, we choose to weight the initial error calculation at each point by ρj , the

distance from well j to its nearest neighbor:

ξ∗ = argmin
ξ

∑Nw

j=1 ρj [uw,j − uj(ξ)]
2∑Nw

j=1 ρj
+ γ||ξ||. (4.2)

105 110 115 120 125
uref

105

110

115

120

125

u p
re

d

Predicted u vs. reference uref (Weighted)
Prediction
Exact

Figure 12. Scatter plot showing performance of weighted algorithm in estimating u.

Figure 12 is the analog of Fig. 5 for the weighted case, and Fig. 13 is the analog of

Fig. 7 for the weighted case. Unfortunately, we do not see any appreciable change in the

error or the calculations.

Figure 14 shows the error in log T for both the weighted and unweighted cases. The

unweighted case is the analog of Fig. 11. The profile is somewhat different, as it comes

from a different code. Note that the particular “nearest-neighbor” weighting chosen does

not improve the results, though perhaps a different weighting would.



14 Adriazola et al.

ycomp (Weighted)

8

6

4

2

0

2

4

6

Figure 13. Left: Calculated y. Right: Error in calculation.

Figure 14. Error in y vs. γ, different code.

4.3 Finding ξ∗

In order to improve the calculation of ξ∗, we could use a data-based approach. One

example is the “one-out” method, which proceeds as follows:



Model Inversion Using Low-D Surrogates 15

(1) Construct a reduced vector uw,j which contains every measurement except the jth

one.

(2) Perform the optimization in (2.13) for the reduced set.

(3) Use the results to predict the value of uj and compute the error.

(4) Repeat the process for every j, returning a global error.

This global error will then allow us to compare different functional forms of R to find

the best choice. Time ran out at the workshop before this subgroup could implement this

algorithm; see §5.

5 More Regularizations and a Mapping Approach

Given the values of Nξ and Nw from the Appendix, we may define an observation function

F which maps

F : R1000 → R323, (5.1)

(ξ1, . . . , ξ1000) 7→ (u(x1), . . . , u(x323)). (5.2)

F can be evaluated by a numerical solver of the elliptic equation (1.2), and then evaluating

the solution at the collocation points. Since this can be expensive, we instead build the

surrogate model u(ξ) from a dataset of inputs and outputs to F , D = {ξ(i), u(i)}Nr
i=1,

where each ξ(i) ∈ R1000 and each u(i) ∈ R323. The surrogate model will then be used

to solve the inverse problem of recovering the coefficients ξ† from a particular set of

observations of the pressure uobs = {u†(xi)}i

5.1 Surrogate Model

After trying different families of approaches (Gaussian process regression, polynomial

regression, etc.), we observe that a linear ridge-regression model gives the best general-

ization error. Furthermore, its simple, analytical solution will be helpful in the inverse

problem, as it will provide an analytical solution for the maximum a posteriori optimiza-

tion problem as well.

We follow the general approach in §2.1, except that we regress with the affine map

x 7→ Ax + b, which we henceforth think as a linear map in an expanded space A∗[x, 1]

(using the same construction as (2.8)). A∗ is defined as

A∗ = argmin
A

∥AΞ̃− U∥2F + α∥A∥2F , (5.3)

and ∥A∥2F is the Frobenius norm. (The work in §2.1 has α = 0.) Equation (5.3) admits

the explicit solution

A∗ = (Ξ̃T Ξ̃ + αI)−1Ξ̃TU. (5.4)

Note that when α = 0, (5.4) reduces to (2.8).

We do a 5-fold cross-validation procedure to choose α, and observe that small α per-

forms better, achieving a relative test L2 loss of 0.5% (Fig. 15). The fact that small α

performs better suggests that the linear map is a good approximation. We fix α = 1,



16 Adriazola et al.

which improves numerical stability and the condition number of A∗. Training error is

similar to testing error, suggesting no overfitting (as expected by a simple model).

Figure 15. Validation relative error vs parameter α for the ridge regression surrogate

model.

We fix the linear map A∗ as a surrogate model into the inverse problem solution step.

5.2 Inverse Problem

We use a maximum a posteriori (MAP) estimation approach, from a Bayesian perspec-

tive. We assume that the observation error is Gaussian, so that, if given access to F , we

would minimize

argmin
ξ

∥F(ξ)− uw∥22 +R(ξ), (5.5)

where R is a regularization term that prevents ill-posedness and can be interpreted as

the prior contribution. In (5.5) we have absorbed the regularization factor γ from (1.4)

into R; this is done so that we may consider more general forms below.

Since we aim to avoid evaluating F , we replace it with our learned surrogate model

F̂(ξ) = A∗ξ, and we experiment with different choices of regularization of the form

R(ξ) = ∥Rξ∥22, where R is a matrix. This choice corresponds to the linear-Gaussian

model inversion and provides an analytic solution to (5.5), making the two-step process

equivalent to a Kalman filter. Indeed, we have

ξ∗ = argmin
ξ

∥A∗ξ − uw∥22 + γ∥R1/2ξ∥22

= (AT
∗A∗ + γR)−1AT

∗ uw.

Natural choices of R include:

(1) I (the standard L2 penalty used in §4.1).

(2) A diagonal matrix (weighted L2).

(3) The matrix of basis functions Ψ, where ψij = ψj(xi). This roughly penalizes L2

loss of y.

(4) LΨ, where L is the matrix of finite differences. Note this roughly penalizes the

gradient of y.



Model Inversion Using Low-D Surrogates 17

Figure 16. Predicted vs. true y(x) for weighted L2 regularization. Here γ is denoted as

λ.

Figure 17. Predicted vs. true y(x) for standard L2 regularization.

(5) Regularizations of the form

R(ξ) = γ1∥R1/2
1 ξ∥22 + · · ·+ γs∥R1/2

N ξ∥22
are also possible, with analytic solution

ξ∗ = (AT
∗A∗ + γ1R1 + · · ·+ γNRN )−1AT

∗ uw. (5.6)

After recovering a predicted ξ, we use the KKL expansion formula to compute y in a

grid and report the relative L2 error with respect to the reference, as defined by (2.14).

For the first experiment, we fix R = I (option #1) and choose γ = 1 by a cross-

validation procedure, over the data and a reference pair of transmissivity field and pres-

sure (Fig. 16). We observe from the predicted y(x) (Fig. 17) and the predicted ξ (Fig.

18) that the recovered solution is too smooth and does not recover correctly the higher

modes of ξ. We note that the reference transmissivity field does not have ξ values as

it does not come from a Gaussian process realization, but we approximate them by a

least-squares procedure.

As a solution, we propose a weighted L2 regularization loss (option #2), with the

diagonal entries decaying as rii ∝ i−k, with k also learned from cross-validation to be

0.7. We observe that the recovery improves, is less smooth (Fig. 19) and more accurately

recovers the higher frequency modes (Fig. 20).

We finally experimented with a weighting of ξ, LΨξ and the first term to ∥A∗ξ−uw∥Σ,
where Σ is a Matérn covariance matrix of the spatial location of the xi, which marginally



18 Adriazola et al.

Figure 18. Predicted vs. approximated from truth ξ for standard L2 regularization.

Figure 19. Predicted vs. true y(x
¯
) for weighted L2 regularization.

Figure 20. Predicted vs. approximated from truth ξ for weighted L2 regularization.

improved performance. We present the best relative error results of different approaches

in Table 1.

6 Neural network implementation

6.1 PyTorch

In this section, we explore the use of PyTorch for calculation of a surrogate model for

u(ξ). PyTorch is a popular package in Python whose general purpose is aligned with ma-

chine learning tasks, and built in particular to simplify constructing and fitting neural

networks at a fairly high (simplified) level. It provides tensor classes for array storage,

and automatic construction of computational graphs, loss functions, activation functions,

and general mathematical functions, which combine with seamless automatic differentia-



Model Inversion Using Low-D Surrogates 19

Approach Best relative L2 loss

Uniform L2 0.182
Weighted L2 0.176
Weighted L2 + Covariance weights 0.172
Weighted L2 + y weights 0.169

Table 1. Relative L2 of different approaches.

tion, to perform both forward and back-propagation calculations in feed-forward neural

networks. It is valuable to know that this software is not necessarily restricted to neu-

ral networks, however; a wide variety of optimization tasks can be done as long as the

optimizable parameters and loss function are specified.

To illustrate, let loss is a torch variable which calculates the value of an arbitrary loss

(e.g., a two-norm-based error on the prediction(s))

L(ξ) = ||uw − u(ξ)||, (6.1)

as in (1.3), or some version with regularization

L(ξ) = ||uw − u(ξ)||+ γR(ξ), (6.2)

as in (1.4). Then calculations of gradients of the loss with respect to the loss ∇ξL
and subsequent update of the collection of parameters from ξk to ξk+1 are achieved

via loss.backward() (for the gradient) and loss.step() (for an iterative update)

respectively. PyTorch also exposes a wide range of optimization update schemes via

torch.optim.SGD, whose parameters allow one to specify many gradient-based methods

(not just Stochastic Gradient Descent).

Given some of the challenges specific to this problem, such as exploration of regularizer,

uncertain network structure, and minimization tasks, we found the benefits of using

PyTorch for black box optimization appealing. We describe the details of implementation

and preliminary results in this section.

6.2 Implementation

For the remainder of this section, ξ refers to the collection of all parameters available to

be optimized, regardless of the details of the neural network architecture.

Broadly, the question of the precise structure (number of layers and dimensionality of

each layer) of a neural network, given the application problem, has little to no mathe-

matical grounding. Rather, it is a blend of heuristics, trial and error, and incorporation

of domain-specific knowledge. For example, when neural networks are applied to image

processing, there is a notion of implied correlation between features (dimensions in the

data). Pixels are usually located on a rectangular grid, and there is some degree of con-

tinuity in color-value space (loosely defined). The successful end result in that domain

is convolutional neural networks (see, e.g. [11]). In our case, given the time constraints

of the MPI workshop, we acknowledge that there are two main avenues to apply domain

specific knowledge that we have not done.



20 Adriazola et al.

Figure 21. Schematic illustrating surrogate model structure in PyTorch. usurr is denoted

u elsewhere.

Firstly, similar to image processing, we expect that in truth, there are strong cor-

relations between a feature and its spatial neighbors (whether or not the domain is a

rectangle). Secondly, the input/output pairs are expected to obey a physical law – trans-

missivity values T are coupled to pressure values u via (1.2). The field of physics-informed

neural networks attempts to exploit implied knowledge to improve performance here; see

for example [3].

We restrict to a shallow “bottleneck” mapping illustrated in Fig. 21. The hypothesis

underlying this is that the relationship between collections of input and output vari-

ables should not depend on the resolution of the number of terms in the KKL expansion

(representing the “1000” of the input dimension) nor the resolution of the mesh (rep-

resenting the “1425” of the output dimension). The precise dimension of the mapping

for this problem, or a general inverse problem for this type of partial differential equa-

tion, or more broadly a PDE with n spatial variables, m unknowns, etc., is unknown

to us. However, we note that methods and heuristics exist which attempt to infer the

dimension of an abstractly defined manifold rather than declaring it arbitrarily. While

sophisticated methods exist, the most accessible for future work is a brute-force attempt,

increasing dimensions until one sees diminishing returns in numerical performance. These

are directions for future work.

6.2.1 Functional form

In our case, the function takes the form

u(ξ) = σ (Bdec σ(Bencξ + b1) + b2) , (6.3)



Model Inversion Using Low-D Surrogates 21

where ξ = {Benc, Bdec,b1,b2} are the argminimizable parameters. The dimension of the

latent space is denoted d—understood to be small, and chosen as d = 3 in our numerical

experiments. The pair Benc ∈ Rd×1000 and b1 ∈ Rd (the “encoding” stage) map input

data to a low-dimensional latent space W ⊂ Rd. Similarly, the “decoding” stage maps

W to R1425 via Bdec ∈ R1425×d and b2 ∈ R1425.

6.2.2 Choice of activation function

We will later explore the choice of “activation function” σ(z) in the neural network; in

the code this is chosen by the user as one of

σ(z) = Id(z) ≡ z, (6.4a)

σ(z) = ReLU(z) = Idz>0 ≡ z+ ≡ zH(z), (6.4b)

σ(z) = tanh(z). (6.4c)

Here H(z) is the Heaviside function. When the input to σ is vector-valued, the operation

acts entry-wise and outputs in the same space.

It is important to note that the observed values of outputs u(ξ) should conform to

the structure of this function. For example, use of σ(z) = tanh(z) combined with the

form of (6.3) requires outputs to lie in (−1, 1), and σ(z) = ReLU(z) necessitates outputs

are nonnegative. Modification of the functional form and/or preprocessing of the original

input/output pairs can address this. We did not explore other functional forms during

the MPI week, but this is an important direction for future work.

6.2.3 Training and evaluation of loss

The data provided by the sponsors is of complete (ξ,u) pairs: ξ ∈ R1000, u(ξ) ∈ R1425,

representing the full discretization of the Hanford Basin. To address real-life applicability,

measurements for transmissivity, pressure, and so on, are observable only at a few sparse

locations (water wells); while the full transmissivity, pressure, etc. fields were calculated

using a high-fidelity solver prior to the workshop.

We implement evaluation of loss of the pairs either across the entire domain, or only

at those wells, based on metadata provided by the sponsor. Our preliminary results do

not include the nuanced regularization necessary to produce globally accurate results;

the distinction comes down to (6.2), where we use measurements only at the well sites

(as described in §1) or over the full 1425 mesh cells.

6.2.4 Details of training and parameter choices

A custom class in Python was written extending the template torch.nn.Module which

allows one to define the set of optimizable parameters ξ on class instantiation. We addi-

tionally define σ at that stage, as well as a nominal identity function (directly returning

the input) to study strictly affine functional forms. The forward() function directly

computes (6.3). A function fit() which we have implemented in the class follows the

scikit-learn style methodology of taking training data (n instances of input/output



22 Adriazola et al.

Figure 22. Top: example out-of-sample prediction based on low-rank linear mapping fit

via PyTorch. Bottom: same prediction based on shallow bottleneck feed-forward neural

network. ReLU activations used. Without careful choice of regularization, model appears

to attempt to fit values only at wells. Here, a 2-norm regularization penalty is applied in

the loss for the coefficients of the weights in the neural network.

pairs) and performing the full optimization process and storing the fitted model within

the object. Descent parameters include the learning rate (default: 0.1), regularization

parameter (default: 10−4), and number of training iterations (default: 100). Several user-

controlled switches also exist to record information about the training (optimization)

process, such as loss values, the parameter set, etc.

6.3 Results

The first experiment was to set σ(z) = Id(z), given the structure of the underlying

problem. In this case, direct distribution of the matrices leads to an implied structure

u(ξ) = BdecBencξ +Bdecb1 + b2

u(ξ) = B̃ξ + b̃,
(6.5)

which is a linear (strictly: affine) mapping which will explicitly be rank-d. When the

matrices are not restricted to be a certain rank, several classes of minimization problems

(6.2) have explicit solutions in terms of algebraic operations on ξ and associated û.

The second experiment chooses σ(z) = ReLU(z), as well as evaluating pointwise error



Model Inversion Using Low-D Surrogates 23

at the well sites only. The trained model is relatively “sparse” in the sense that only

933 of the 1425 × 3 = 4275 trained weights were numerically nonzero. Even at the well

sites, where the loss function directly penalizes pointwise errors, performance was not

nearly as successful; we observe a relative error in excess of 40% after the same training

schedule as with the affine formulation (σ = Id) which we believe may the symptom of

this sparsity in output prediction values.

6.4 Conclusions

A framework was implemented in PyTorch, and its basic functionality was validated

when the functional form of the system is reduced to a the class of linear (strictly: affine)

mappings. The flexibility in our implementation allows us to, most simply, swap out

the activation function in one line and explore nonlinear approaches. As we discovered,

producing a high-quality result is not quite as simple as this. Careful formulation of the

loss is likely required—such as in penalizing a numerical gradient of the prediction, or

penalizing total variation of the prediction, to incentivize smooth solutions.

More extensively, we understand there is an art in construction of the hyperparameters

of a neural network as well as how the model is trained. Facets such as the number of

layers, dimensionality of each layer, and activation function for each layer can all have

significant impact on the quality of the resulting model. Similarly, aspects of how the

model is trained – the choice of optimizer step, presentation of training examples, and

variable learning rate, to name a few, may be the determining factor in finding the

theoretical global optimal parameter set ξ for a fixed network structure.

In summary, what we have produced here is primarily a proof of concept of a pipeline

which an energetic researcher may quickly explore with time and more responsive com-

puting resources than a personal laptop. We expect higher quality solutions may be

lurking in a “simpler” corner of problem space, but we leave this search for future work.

6.5 Code

The current version of the code exists as a “fork” of Dr. Barajas-Solano’s GitHub reposi-

tory provided for the workshop, located at https://github.com/maminian/pnnl_mpi23.

Please reach out with any questions.

7 Alternative dimension reduction techniques

Currently, as stated in §2.1, the method proposed by the PNNL uses simple linear re-

gression (i.e., least squares) to find “effective directions,” i.e., unit vectors âj such that

at each location xj ,

u(xj) ≈ âTj ξ ≡ ηj . (7.1)

Note the similarity between (7.1) and (2.6).

However, the scatter plots u(xj) vs ηj presented in §2 suggest that a single effective

direction per location may not be enough. Therefore, there will be a benefit in determining

https://github.com/maminian/pnnl_mpi23


24 Adriazola et al.

several effective directions, â
(k)
j , such that at each location j:

u(xj) ≈ fj([â
(1)
j ]T ξ, [â

(2)
j ]T ξ, . . .). (7.2)

Here fj(·) is an unknown nonlinear function, determined in a separate step. (That issue

is discussed in §2.2 and §3.2.) Note that (7.2) generalizes (2.2).

Below we describe two different techniques to achieve this: Sliced Inverse Regression

(SIR) [9], along with its modification Kernel SIR [14, 16], and Reduced-Rank Regression

(RRR) [7]. As a preview, while SIR appears to be directly applicable to the problem

at hand, it is not clear whether RRR has relevance to the current problem; this will be

discussed in §7.3.

7.1 Sliced Inverse Regression

In a nutshell, the directions â
(k)
j can be found not by viewing u(x) as a function of ξ

but, conversely, examining the dependence of the mean and covariance of ξ on u(x). For

brevity, in this subsection we simply write u for u(x). Thus, the algorithm presented

below will find “effective directions” separately for separate locations.

The algorithm presented below is the same (or similar) to that found in Wikipedia [13]

or in many existing references on SIR. The main contributions of this group are notes

and some explanations.

SIR Algorithm

(1) For Nr realizations of the random vector ξ, compute N = Nr samples of u. You will

get a range of those values with min(u) ≡ u0 and max(u) ≡ umax. Subdivide the

interval [u0, umax] into hmax slices. The slices do not have to be the same width,

but it is probably easiest to take them uniform. Also, the exact value of hmax

is not too important: according to [9], changing hmax within bounds that appear

intuitively reasonable (e.g., having hmax ∼ 50) changes the directions found by

units of percent. However, the authors of [12] state that the results are sensitive

to hmax, although they do not present evidence for that statement. Note that if

one takes hmax to be “too large,” one will end up having too few samples per slice

(defined above), which will be a problem for the next step.

(2) For each slice h, 1 ≤ h ≤ hmax, compute the average

ξh =
1

Nh

Nh∑
i=1

ξi, (7.3)

where Nh is the number of samples in slice h and the summation is over all samples

in that slice. (Thus, subscript ‘h’ of ξ refers to a slice, while subscript ‘i’ of ξ refers

to a realization of ξ.) Note that the set of hmax points ξh form a (discretized) curve

in RNξ . Denote this curve m(u). (Here ‘m’ stands for ‘mean’.)

Claim: Under the assumption stated below, the curve m(u) lies in the subspace

of RNξ spanned by the effective direction vectors â(k), where the index k enumerates

these directions.

Assumption: For any z ∈ RNξ , the conditional expectation value (on the left



Model Inversion Using Low-D Surrogates 25

hand side of the equation below) satisfies the linearity condition:

E
(
zT ξ

∣∣ [â(1)]T ξ, [â(2)]T ξ, . . . ) = c0 + c1[â
(1)]T ξ + c2[â

(2)]T ξ + · · · (7.4)

for some constant vectors ck ∈ RNξ .

Note SIR-1: According to [9], property (7.4) holds for ξ whose components

have a joint normal distribution or, more generally, whose joint PDFs have elliptic

(i.e., ellipse-shaped) level surfaces. In [1], the authors argue that the outcome of the

SIR algorithm is not too sensitive to that condition being rigorously satisfied, or at

least the samples can be “groomed” before being processed to have that condition

satisfied approximately. A different method that bypasses the need for the linearity

condition (7.4) is discussed in Note SIR-7 after the end of this algorithm.

The reader may skip the next two notes without impacting their understanding

of the algorithm.

Note SIR-2: The proof of the Claim may be found in [9, Thm. 1], but it appears

impenetrable without good knowledge of statistics. The proof for the case of only

one direction â(1) from [5] is a little more clear but was still not fully understood

by the author of this section (T.I. Lakoba).

Note SIR-3: Since this author could not understand the details of the proof of

the Claim, he resorted to an illustrating example. Let ξ ∈ R3 be a vector of random

components with zero mean each, and consider

u = (ξ1 − ξ2) + 0.5ξ22 . (7.5)

The two directions here, â(1) = [1,−1, 0]T and â(2) = [0, 1, 0]T , span the ξ1ξ2 -

plane.

The slices defined in Step 1 of the Algorithm are 3D regions between parabolic

cylinders defined by equations uh = (ξ1 − ξ2) + 0.5ξ22 , which are perpendicular to

the horizontal plane. Since u does not depend on ξ3 and since E(ξ3) = 0, then the

point [(ξ1)h, (ξ2)h, (ξ3)h] has (ξ3)h = 0, where the barred quantities are defined

in (7.3). Thus, the discretized curve composed of all such points indeed lies in the

ξ1ξ2 -plane, spanned by â(1) and â(2).

(3) From the curve m(u) obtained at the previous step, the effective directions are

computed in three substeps.

/S1/ Center the curve at the origin by subtracting the unconditional mean of ξ:

mc(u) = m(u)− 1

N

N∑
i=1

ξi. (7.6)

Recall that this is a discretized curve in RNξ with hmax points.

/S2/ Construct the covariance matrix of this curve:

Σm =

hmax∑
h=1

Nh

N
(mc)h(m

T
c )h, (7.7)

where (mc)h is the point of the curve located in slice h (i.e., the centered—in the



26 Adriazola et al.

sense of (7.6)—version of (7.3)). In other words, the ijth entry of the Nξ ×Nξ

matrix Σm is:

Σm, ij =

hmax∑
h=1

Nh

N
(mc,i)h(m

T
c,j)h, (7.8)

where (mc,i)h is the ith component of the Nξ-dimensional vector (mc)h.

Note SIR-4: It may be relevant to point out here in what sense matrix (7.7)

is called a ‘covariance’ matrix. The averaging (required to make a covariance

matrix) applied over the outer product is over different uh-values. The statistical

averaging over all samples leading to a set of outcomes falling into the interval

[uh−1, uh] has been done earlier, when obtaining the curve m (see (7.3) and the

text below it) and then, from it, mc via (7.6).

/S3/ The kmax dominant effective direction vectors are found as the kmax largest

eigenvalues of the generalized eigenvalue problem

Σmâ
(k) = λ(k)Σξâ

(k), (7.9)

where Σξ is the simple covariance matrix of ξ:

Σξ = E
(
(ξ − E(ξ))(ξ − E(ξ))T

)
, (7.10)

and E(ξ) is the last term in (7.6).

Similarly to what is stated in Note SIR-2 above, the proofs of substep /S3/

for kmax = 1 [5] and for general kmax [9] require more knowledge of statistics

than the author of this section has.

Note SIR-5: It may appear that Substep /S3/, which requires solving an

Nξ×Nξ eigenvalue problem may be prohibitively expensive as it requires O(N3
ξ )

operations. However, in practice one needs only the first few dominant eigenvec-

tors, which may require only O(N2
ξ ) operations.

Note SIR-6 There are some situations, such as when the function f in (7.2) has certain

symmetry (e.g., f(η) = η2), when the SIR method fails [2]. However, it does not seem to

be a concern for the PNNL problem, where the functions are only weakly nonlinear.

Note SIR-7 If the linearity condition (7.4) ever becomes an issue, there is a technique

(MAVE) developed in [15]. Section 2 of [15], where the technique is explained, is actually

quite readable. The main idea appears to be this. In the vicinity of each input vector

ξi leading to a value u in slice h, the linearity condition (7.4) holds (probably, by the

argument that locally, joint PDFs can be approximated as normal). This is expressed

by the equation preceding [15, (2.5)]. Then a certain minimization problem, (2.6) in

[15], can be stated near each ξi point. Averaging the expressions of such problems over

all points within one slice yields a minimization problem (2.7) in [15], the solution of

which produces the desired effective directions. The only part that remains unclear to

this author is the notation σB introduced in [15, (2.2)] (to what does the subscript B

refer?).

Reference [12] claims to have combined MAVE with SIR, but its presentation is such

that this author was unable to understand what improvement [12] made over what has

already been done in [15].



Model Inversion Using Low-D Surrogates 27

7.2 Kernel Sliced Inverse Regression

Kernel sliced inverse regression (KSIR) is a method first proposed by [14] and almost

concurrently expanded on by [16]. KSIR builds on SIR by simply replacing the inner

product, implied by the model given by (7.4), with an inner product defining a so-called

reproducing kernel Hilbert space (RKHS). KSIR is a more robust method than SIR since

there are examples where SIR fails to identify symmetric patterns. The implementation

and more about the advantages of KSIR will be discussed in this section, but first,

we will discuss the formalism precisely. Note that throughout this section we deviate

from the previous subsection as we suppress the dependence on j made explicit by (7.1)

and (7.2) for ease of notation, that is, the reductions considered here are done for a fixed

uj = u(xj) =: u.

LetX be an arbitrary set andH a Hilbert space of real-valued functions onX, equipped

with the usual notions of pointwise addition and multiplication. We define an evaluation

functional Lξ over H as a linear functional that evaluates each function at a point ξ, that

is, Lξ : f 7→ f(ξ), for all f ∈ H. We say that H is a reproducing kernel Hilbert space if

Lξ is a continuous operator, or equivalently if the operator is bounded [10].

In practice, since Lξ is a bounded, linear operator, we can apply the Riesz representa-

tion theorem, see [10, ch. 2] or any standard text on functional analysis. That is, Riesz’s

theorem guarantees we may represent the operator as an inner product of f with a unique

function Kξ ∈ H as follows:

f(ξ) = Lξ(f) = ⟨f,Kξ⟩H , ∀f ∈ H, (7.11)

where ⟨·, ·⟩H is the inner product defining the space H. Since Kξ is itself a function

defined on X with values in R, we have that

Kξ(ζ) = Lζ (Kξ) = ⟨Kξ,Kζ⟩H .

Applying this pointwise in X allows us to define the reproducing kernel of H as a function

K : X ×X → R by

K(ξ, ζ) = ⟨Kξ,Kζ⟩H . (7.12)

If in addition the kernel K is positive definite and we assume that the Hilbert space

is separable, as is often the case in applied data science, then we can more concretely

understand the reproducing kernel via its spectral decomposition

K(ξ, ζ) :=

d∑
k=1

λkϕk(ξ)ϕk(ζ), d ≤ ∞. (7.13)

The main idea of KSIR is then to first map data from some input space X ⊂ Rp into

the spectrum-based feature space H via the transformation Φ:

ξ 7→ z := K(ξ) :=
(√

λ1ϕ1(ξ),
√
λ2ϕ2(ξ), . . .

)T

,

where ξ ∈ X . Of course, this transformation is related to the kernel function in the sense

that ⟨Φ(ξ),Φ(ζ)⟩H = K(ξ, ζ) implied by (7.13). Now, the regression model analogous to

SIR in the feature space H is given by

u = f
(
[a(1)]TΦ(ξ), . . . , [a(kmax)]TΦ(ξ)

)
= f

(
[a(1)]T z, . . . , [a(kmax)]T z

)
,



28 Adriazola et al.

where ak ∈ Rd, d ≤ ∞.

The following observation is key: the reproducing kernel function K(ξ, ζ) is defined di-

rectly by (7.12) and so the possibility to apply the SIR methodology without the explicit

computation of the spectral transformation Φ may exist. Indeed, the KSIR methodology

leverages this in such a way that allows the SIR framework to be applied rather directly.

The remainder of this discussion then is to make clear how the computation of the effec-

tive directions [a(kmax)]TΦ(ξ) can be made while circumventing an explicit computation

of the mapping Φ.

To begin, the strategy mimics classical SIR by seeking the dominant directions of the

associated covariance matrix. To this end, we let

Σzz =
1

N

N∑
i=1

Φ (ξi) Φ (ξi)
T

be the sample covariance matrix of z := Φ(ξ), assuming for sake of convenience that the

spectral function Φ has mean zero. Define the following

ph =

∑N
i=1 δh(ui)

N
=
Nh

N
, δh(ui) =

{
1 ui ∈ hth slice,

0 otherwise,
(7.14)

so ph is the proportion of all observed ui’s that fall into the hth slice, where ui = f |ξ=ξi
.

Also, let ΣE(z|ũ) be the sample between-slice covariance matrix given by

ΣE(z|ũ) =

hmax∑
h=1

phΦ̄hΦ̄
T
h , (7.15)

where

Φ̄h =
1

Nph

N∑
i=1

Φ (ξi) δh(ui)

denotes the sample mean of the hth slice and ũ is the discretization of u with respect

to the partition induced by slicing. As before, we compute the eigenvalues λ ≥ 0 and

eigenvectors v ∈ H satisfying

ΣE(z|ũ)v = λΣzzv; (7.16)

compare this with (7.9). By projection with respect to the RKHS inner product, we have〈
Φ (ξi) ,ΣE(z|ũ)v

〉
H = λ ⟨Φ (ξi) ,Σzzv⟩H , i = 1, . . . , N.

We now seek solutions of the form v =
∑N

i=1 αiΦ (ξi) for some α1, . . . , αN . To clean

up the consequent computation, we define the kernel data by

K :=
{
Kij =

〈
Φ (ξi) ,Φ

(
ξj
)〉

H

}
N×N

, (7.17)

with the ijth element defining the Gram matrix entry Kij . Consider the eigenvalue

problem

EHKα = λKα, EH =

hmax∑
h=1

N−1
h 1h1

T
h , 1h = [δh(u1) . . . δh(uN )]

T
, (7.18)



Model Inversion Using Low-D Surrogates 29

where α is an N -dimensional vector whose jth element is the coefficient αj . A straight-

forward, yet tedious, calculation, shows that (7.18) is equivalent to the problem given by

(7.16). The importance of reformulating the eigenvalue problem (7.16) in this way will be-

come evident soon. Although, it should be noted that the eigenvalue problem for v given

by Equation (7.16) is d-dimensional, yet the problem for Kα is, in fact, N -dimensional.

For details of the proof, the reader is referred to the the Appendix in [14].

Of course, it is best to work with an orthonormal basis. To this end, KSIR assumes

that each generalized eigenfunction, denoted by its superscript, α1, . . . ,αN is normalized

so that
〈
vk,vk

〉
H = 1 for all k = 1, . . . , N . Let λ1 ≥ · · · ≥ λN denote the eigenvalues,

and α1, . . . ,αN be the corresponding complete set of eigenvectors. Since each vk is of

the form vk =
∑N

i=1 α
k
i Φ (ξi), the normalization implies that

1 =

N∑
i=1

N∑
j=1

αk
i α

k
j

〈
Φ (ξi) ,Φ

(
ξj
)〉

H =
〈
αk,Kαk

〉
RN = λk

〈
αk,αk

〉
RN , k = 1, . . . , N.

(7.19)

Tying it all together, we observe how the effective directions are computed. Let ξ be

a test point, with an image Φ(ξ) in H and let ṽk be the vector vk with corresponding

normalized αk. Projecting Φ(ξ) along the vectors ak := ṽk for each k gives

〈
ak,Φ(ξ)

〉
H =

N∑
i=1

αk
i ⟨Φ (ξi) ,Φ(ξ)⟩H =

N∑
i=1

αk
iK (ξi, ξ) . (7.20)

We now see that (7.18)–(7.20) determine effective directions and do not require knowledge

of the spectral mapping Φ in explicit form. Therefore, computing the effective directions

in KSIR has computational complexity comparable to SIR, mutatis mutandis. More-

over, the computational methodology is almost identical to classical SIR discussed in the

previous subsection.

To be clear, the procedure is as follows:

(1) Solve the eigenvalue problem (7.18) for each Kαk.

(2) Normalize the resulting spectral basis via (7.19).

(3) Compute each effective direction
〈
ak,Φ(ξ)

〉
H by computing the N kernel evalua-

tions, multiplications, and additions required by
∑N

i=1 α
k
iK (ξi, ξ) in (7.20).

In practice, the choice of the kernel function remains. Reference [14] makes the claim that

choosing an elliptically symmetric kernel is sufficient to meet the linear design condition

for KSIR, which is analogous to (7.4) for SIR. Also, it is discussed that Gaussian ker-

nels with parameters chosen ad hoc, work well enough in practice. A further discussion

in [16] provides opportunities for computational speed up of KSIR via typical compres-

sions (dimensionality reduction) afforded by the singular value decomposition; see for

example [8]. That is, it is often not the case that all the eigenvectors ak must be known;

just the first few dominant modes would suffice with how many to keep dependent on

the desired fidelity in the computational problem.



30 Adriazola et al.

Testing KSIR:

A suggested test for multi-response regression problems is made clear in [16]. There, the

so-called Friedman system is used to generate synthetic data with 10 response variables

and 10 predictor variables. The predictor variables ξ1, . . . , ξ10 are iid uniformly over [0, 1],

and the 10 response variables are generated via the Friedman system:

u1 = 10 sin (πξ1ξ2) + 5 (ξ3 − 0.5)
2
+ ξ4 + ξ5 + ϵ,

u2 = 10 sin (πξ1ξ2) + 20 (ξ3 − 0.5)
2
+ 10ξ4 + 5ξ5 + ϵ,

u3 = 5y1 + ϵ

u4 = u1 + u2 + ϵ,

u5, . . . u10 ∼ N (0, 0.1), ϵ ∼ N (0, 1),

where N (0, ·) is a normal distribution with a mean of zero and standard deviation of ·.
In [16], a random sample of size 2000 is generated.

This example is illustrative since, although the responses are in a ten-dimensional

space, the effective dimensionality is actually only two. Moreover, it is demonstrated

by [16] that KSIR is able to identify the even symmetry in ξ3 exhibited by the response

variables u1 and u2, while SIR does not. Regrettably, the workshop finished before an

implementation of KSIR could be undertaken and tested on this example. We leave

this for future consideration should one consider a straightforward comparison between

SIR and KSIR on identifying the two effective directions in this relatively low- (ten-)

dimensional problem.

7.3 Reduced-rank regression (RRR)

The summary of the RRR technique found below is based on [7] and largely uses the

notation of that reference. We also give the correspondence between those notations and

the ones used in the rest of this report. As announced in the preamble to §7, we will

point out that RRR, unlike SIR, is not relevant to the problem considered in §2 of this

report.

Consider a regression problem

Y = µ + CX + ε, (7.21)

where Y,µ, ε ∈ Rs×1, X ∈ Rq×1, C ∈ Rs×q, with µ being the mean of Y over realizations

and ε is the regression error. The goal is: given X and Y, find C and µ that minimize ε.

To compare (7.21) with the problem considered in §2 of this report, we will write the

transpose of the former equation and omit the ε-term for simplicity:

YT = µT +XTCT . (7.21T )

This equation corresponds to a single row (i.e., one realization, Nr = 1, of the random

vector ξ) of (2.7). In other words, YT corresponds to (one row of) U , XT corresponds

to ξT , and CT corresponds to one row of A in (2.7). Thus, s = Nw and q = Nξ.

If, instead of considering a single realization of X one considers Nr > Nw random

realizations (so that now XT ∈ RNr×Nξ and YT ∈ RNr×Nw), the problem of finding C



Model Inversion Using Low-D Surrogates 31

reduces to the standard least-squares problem and has the solution:

CT =
(
XXT

)−1
XYT , (7.22)

where we have omitted µ for simplicity. Generically (and for Nr > Nw), matrices XXT

and XYT have full rank, and then so does C. The solution (7.22) will then yield the

matrix A in (2.7). We will now explain what new perspective the approach presented

in [7]1 brings to the solution of (7.21). We will also explain that this approach is not

relevant to the problem of finding multiple effective directions considered in §7.1.
Reference [7] discusses how one can find a matrixC of rank t that is lower than s = Nw:

rank (C) = t < s = Nw. (7.23)

(Note that for the setup of §2, one always has Nw < Nξ, so that the rank of C cannot

exceed Nw.)

To provide an interpretation for the significance of such a lower-rank C, consider an

example where in (7.21), s = Nw = 10, q = Nξ is arbitrary, and Nr = 1. Suppose that

rank (C) = 6; then 4 of the rows of C are linearly dependent on the other 6 rows. As

one illustrating situation, suppose that each of the rows 7–10 depends on all of rows

1–6. Then entries 7–10 of each vector (column of) Y are dependent (a.k.a. “are fully

explained by”) entries 1–6. This says that the pressures at wells 1–6 fully predict the

pressures at wells 7–10. In other words, wells 1–6 form a cluster whose measurements

fully predict the results of measurements elsewhere. As a second illustrating situation,

suppose that row 7 depends on rows 1–2 and rows 8–10 depend on rows 3–6. Then the

pressure measurements in the cluster formed by wells 1–2 predict the measurement in well

7, and the measurements in the cluster formed by wells 3–6 predict the measurements in

wells 8–10.

As one can see, the above “clustering” of wells is unrelated to the problem of finding

clusters (combinations η in (2.6)) of entries of ξ that would provide an approximate de-

scription of the pressure uj at a given well j. However it may be similar to the geographic

clustering discussed in §4.2.
Nonetheless, for completeness, we will present the algorithm of finding C, assuming

that its rank t < s has been previously estimated. Estimation of t appears to be discussed

in [4], where, for some reason, the roles of s and t are reversed compared to that used here

(and in [7]). This estimation appears to be based on the singular value decomposition of

the matrix on the right-hand side of (7.22).

RRR Algorithm

0a. Note that one can write C = AB, where A and B are both rank t. Matrices A and

B are not unique, but once one chooses them by the step shown below, one then knows

C.

0b. Assume that the mean vectors µX and µY , as well as the covariance matrices ΣXX ,

ΣXY ∈ Rq×s, ΣY X ∈ Rs×q, ΣY Y are known. Note that

ΣY X = ΣT
XY . (7.24)

1 The RRR theory presented in [7] had been developed in earlier papers; see the second
paragraph on p. 249 there for a brief review.



32 Adriazola et al.

1. The choices

A = Γ−1/2 [v1,v2, . . . ,vt], (7.25)

B =

 vT
1
...

vT
t

 Γ1/2 ΣY X Σ−1
XX , (7.26)

µ = µY −ABµX (7.27)

minimize the covariance matrix

E
(
Γ1/2

(
Y − µ−ABX

) (
Y − µ−ABX

)T
Γ1/2

)
(7.28)

(i.e., minimizes all of its eigenvalues simultaneously). Here Γ is a symmetric positive

definite weight matrix: by choosing it in specific ways, one can make the problem

at hand coincide with the principal component or canonical correlates analyses. One

can also choose it differently if needed. The vectors vj are eigenvectors of the ma-

trix Γ1/2 ΣY X Σ−1
XX ΣXY Γ1/2, which is symmetric due to (7.24) and positive definite.

Hence vj (can be chosen to) form an orthonormal set and, in particular,

s∑
j=1

vjv
T
j = I, (7.29)

where I ∈ Rs×s is the identity matrix. Finally, the matrix C = AB is given by:

C = Γ−1/2
t∑

j=1

vjv
T
j Γ

1/2ΣY X Σ−1
XX . (7.30)

Note that when t = s, (7.30) reduces to the usual full-rank least-squares formula (7.22)

via the use of (7.29).

8 Conclusions and Further Research

In this one-week endeavor, we investigated the inverse problem of identifying the trans-

mission field given the sparse observation of the hydraulic head field. A three-step algo-

rithm was developed to represent the problem in a reduced dimension to diminish the

computational cost. First, a simplified weight vector η was constructed to reduce the

number of input parameters to the model from Nξ = 103 down to just one. Next we

replaced the map from η to u with a linear function to make the computation much

faster. Last, we implemented standard optimization procedures to identify the optimal

ξ. Results from this most simple of models compared favorably with the test data set we

were given.

Once this proof of concept had been established, we implemented more complicated

models. The linear map was replaced by slightly more complicated ones (quadratic, cubic,

or sigmoid). Regularization of several different types were introduced and tested. The

algorithm was also implemented using a neural network. Again, our results compared

favorably with the test data.



Model Inversion Using Low-D Surrogates 33

Lastly, we provided detailed summaries of more complicated dimension reduction tech-

niques found in the literature, such as SIR, KSIR, and RRR. We also provided descrip-

tions of how these techniques could be applied to the transmission field problem. Another

possible direction to pursue is to adopt the physics-informed deep neural network (DNN),

in which the transmission field can be captured by a Gaussian random field. The coeffi-

cient for this representation can be determined via the DNN, constrained by the physical

law or the PDE.

Modeling contaminant transport at the Hanford waste site is a crucial problem due

to the high toxicity of the material stored there. This work can provide researchers

with a simpler, faster way to characterize the underlying transmissivity field while still

maintaining accuracy.

Nomenclature

If a symbol appears in bold face, it is a vector whose components (typically at wells) are

in regular type. Equation numbers where a variable is first defined is listed, if appropriate.

A: matrix in RRR algorithm (7.25).
A: matrix whose columns are aj (2.7).
a: near-gradient vector (2.2).
B: matrix in RRR algorithm (7.26).
B: encoding/decoding matrix (6.3).
b: constant in linear expression of u (2.3).
C: matrix in RRR regression problem (7.21).
C: matrix whose columns are cj (2.12).
c: vector of parameters characterizing f (2.1) or vector in linearity condition (7.4).
D: set of inputs and outputs to F .
d: dimension, variously defined.
EH : weighting matrix in SIR eigenvalue problem (7.18).
F : observation function (5.1).
f : simplified approximation function (2.1).
H: feature space in KSIR problem.
H: reproducing kernel Hilbert space (7.11).
h: index of slices in SIR algorithm (7.3).
i: index variable for realizations (2.4).
j: index variable for cells (2.5).
K: Gram matrix (7.17).
K: reproducing kernel in KSIR problem (7.11).
k: index variable for weights (1.1) or directions.
L: loss function (6.1).
L: matrix of differences (§5.2) or evaluation functional in KSIR problem (7.11).
M : matrix used in polynomial fitting (2.10).
m(u): discretized mean curve in SIR algorithm (7.6)
m(x): centering function of log T (1.1).
(mc,·)h: component of (mc)h (7.8).
N : maximal index (1.1).
n: number of observations in KSIR problem (7.14).
ph: proportion of observations in slice (7.14).
q(x): groundwater velocity at position x.
q: dimension of matrix in RRR regression problem.
R(ξ): regularization function (1.4).
R: regularization matrix.
s: dimension of matrix in RRR regression problem.



34 Adriazola et al.

T (x): transmissivity field at position x (1.1).
t: rank(C) in RRR regression problem (7.23).
U : matrix whose columns are aj (2.7).
u: pressure field measurements (1.2).
v: one of an orthonormal set of eigenvectors in the RRR algorithm (7.16).
W : latent space.
X: vector of independent variables in RRR regression problem (7.21).
X : input space in KSIR problem.
X: arbitrary set.
x: position in flow field (1.1).
Y: vector of measurements in RRR regression problem (7.21).
y: log T (1.1).
z: arbitrary vector, variously defined.
α: eigenvector in SIR eigenvalue problem (7.18).
α: regularization parameter for fitting problem for A (5.3).
Γ: positive definite symmetric matrix in RRR algorithm (7.25).
γ: regularization parameter (1.4).
δh(·): indicator function (7.14).
ε: vector of regression errors in RRR regression problem (7.21).
η: simplfied weight vector (2.1).
Λ: diagonal matrix (3.1).
λ: eigenvalue (7.9).
µ: mean of Y over realizations in RRR regression problem (7.21).
Ξ: matrix whose rows are ξ(i) (2.5).
ξ: weight vector (1.1).
ρ: nearest-neighbor inter-well distance (4.2).
Σ: covariance matrix (7.7).
σ: function in neural network implementation (6.3).
Φ: spectral function in KSIR problem (7.13).
Ψ: matrix of basis vectors.
ψ(x): basis vector (1.1).
Ω: computational domain (1.2).

Other Notation

c: as a subscript on N , refers to the number of computational cells; as a subscript on m,

refers to the centered mean curve (7.6).
dec: as a subscript, used to represent the decoding phase (6.3).
enc: as a subscript, used to represent the encoding phase (6.3).
h: as a subscript, refers to a slice (7.3).
(k): as a superscript on a, used to refer to effective direction (7.2).
m: as a subscript on Σ, refers to the mean curve covariance matrix (7.7).
max: as a subscript, used to represent a maximum value.
obs: as a subscript, used to refer to observations.
ref: as a subscript, used to refer to a reference value.
r: as a subscript, refers to the number of random realizations (2.4).
tm: as a subscript on y, refers to the total mean.
w: as a subscript, refers to wells (where observations are taken).
η: as a subscript on N , indicates the number of weights in vector η.
ξ: as a subscript on N , indicates the number of weights in vector ξ (1.1); as a subscript

on Σ, indicates the simple covariance matrix (7.9).
∗: as a subscript, used to refer to an optimizer (1.3).
¯: used to refer to an average (7.3).
† : used to refer to an estimate from a single set of data.
ˆ: used to refer to a unit vector (2.2) or estimate.



Model Inversion Using Low-D Surrogates 35

˜: used to refer to a matrix that has been expanded (2.8), a matrix or vector that has

been modified (6.5), or to arguments of a between-slice covariance matrix (7.15).
|| · ||F : Frobenius norm (5.3).

References

[1] Chen, Chun-Houh, & Li, Ker-Chau. (1998). Can SIR be as popular as multiple

linear regression? Statistica sinica, 8, 289–316.

[2] Cook, Dennis, & Weisberg, Sanford. (1991). Sliced inverse regression for dimension

reduction: Comment. Journal of the american statistical association, 86, 328–332.

[3] Cuomo, Salvatore, Di Cola, Vincenzo Schiano, Giampaolo, Fabio, Rozza, Gianluigi,

Raissi, Maziar, & Piccialli, Francesco. (2022). Scientific machine learning through

physics–informed neural networks: where we are and what’s next. Journal of scientific

computing, 92(3), 88.

[4] Davies, P.T., & Tso, M.K.-S. (1982). Procedures for reduced-rank regression. Ap-

plied statistics, 31, 244–255.

[5] Duan, Naihua, & Li, Ker-Chau. (1991). Slicing regression: A link-free regression

method. The annals of statistics, 19, 505–530.

[6] Hristopulos, D.T. (2020). Random fields for spatial data modeling: A primer for sci-

entists and engineers. Advances in Geographic Information Science. Springer Nether-

lands.

[7] Izenman, Alan Julian. (1975). Reduced-rank regression for the multivariate linear

model. Journal of multivariate analysis, 5, 248–264.

[8] Kutz, J. Nathan, & Brunton, Steven L. (2019). Data-driven science and engineering.

Control-Cambridge University Press.

[9] Li, Ker-Chau. (1991). Sliced inverse regression for dimension reduction. Journal of

the american statistical association, 86, 316–327.

[10] Lieb, E., & Loss, M. (2010). Analysis. Second edn. American Mathematical

Society.

[11] O’Shea, Keiron, & Nash, Ryan. (2015). An introduction to convolutional neural

networks. arXiv preprint arXiv:1511.08458.

[12] Wang, Hansheng, & Xia, Yingcun. (2008). Sliced regression for dimension reduc-

tion. Journal of the american statistical association, 103, 811–821.

[13] Wikipedia contributors. (2023). Sliced inverse regression — Wikipedia, the free

encyclopedia.

[14] Wu, Han-Ming. (2008). Kernel sliced inverse regression with applications to clas-

sification. Journal of computational and graphical statistics, 17(3), 590–610.

[15] Xia, Yingcun, Tong, Howell, Li, W.K., & Zhu, Li-Xing. (2002). An adaptive

estimation of dimension reduction space. Journal of royal statistical society, series B,

64, 363–410.

[16] Yeh, Yi-Ren, Huang, Su-Yun, & Lee, Yuh-Jye. (2008). Nonlinear dimension re-

duction with kernel sliced inverse regression. IEEE transactions on knowledge and data

engineering, 21(11), 1590–1603.

[17] Yeung, Yu-Hong, Barajas-Solano, David A., & Tartakovsky, Alexandre M. (2022).



36 Adriazola et al.

Physics-informed machine learning method for large-scale data assimilation problems.

Water resources research, 58(5), e2021WR031023.

Appendix A Parameter Values

We were given values of

Nξ = 103, Nr = 2× 105, Nw = 323, Nc = 1475. (A 1)


	The General Problem
	Breaking Up the Problem: Basic Algorithms
	Finding bold0mu mumu 2005/06/28 ver: 1.3 subfig package
	Finding f and c
	Finding bold0mu mumu 2005/06/28 ver: 1.3 subfig package*

	Breaking Up the Problem: Extensions
	Finding bold0mu mumu 2005/06/28 ver: 1.3 subfig package
	Finding f and c

	Fixing the Estimation
	Regularization
	Weighting
	Finding bold0mu mumu 2005/06/28 ver: 1.3 subfig package*

	More Regularizations and a Mapping Approach
	Surrogate Model
	Inverse Problem

	Neural network implementation
	PyTorch
	Implementation
	Results
	Conclusions
	Code

	Alternative dimension reduction techniques
	Sliced Inverse Regression
	Kernel Sliced Inverse Regression
	Reduced-rank regression (RRR)

	Conclusions and Further Research
	Appendix A

