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1 Vironix MPI 2023 Requests

MPI 2023: Fundamental questions

(1) What collection of patient lab data, biometrics readings, symptoms, and baseline

health factors indicate acute (rapid) and chronic (slower) deterioration of chronic

kidney disease?

(2) Given a set of patient data describing the different temporal stages of CKD deterio-

ration, can we predict when a patient’s health state is at high risk for degeneration

to a new state (i.e., stage 2 to stage 3 or stage 3 to end-stage renal disease)?

(3) Can we correlate estimated glomerular filtration rate and creatinine diagnostic

levels to other observable patient health data (biometrics, symptoms, other co-

morbidities, etc.) to maximize the efficacy of remote monitoring when lab data

isn’t available?

(4) Can we classify (clustering or otherwise) a set of health states that are at the

highest risk of acute and chronic health deterioration (predict hospitalization from

Hong data set using existing feature data and identify high-risk patients based on

stage level from UCI data set)?

(5) Can we build an analytic model to predict patient scenarios indicative of a mild/severe

presentation of heart failure?

(6) What are the performance differences between models built by various machine-

learning classifiers? How do machine-learned classifiers compare to analytical ap-

proaches?

2 Background

Proper kidney function is critical for maintaining overall good health. The kidneys not

only remove wastes, toxins, and excess fluid, but they also help control blood pressure,

stimulate the production of red blood cells, maintain the health of the bones, and regulate

blood chemicals that are essential to life. According to the Center for Disease Control

and Prevention (CDC), more than one in seven American adults are estimated to have

chronic kidney disease (CKD). CKD is a condition in which the kidneys are damaged and

cannot filter blood as well as they should. Because of this, excess fluid and waste from

blood remain in the body and may cause other health problems, such as heart disease and

stroke. 15% of US adults are estimated to have chronic kidney disease, about 37 million

people [2]. CKD also contributes to additional health concerns such as anemia, increased

occurrence of infections, low calcium levels, high phosphorous levels, high potassium

levels in the blood, depression, and loss of appetite. CKD has varying levels of severity

which are irreversible. It usually worsens over time though treatment has been shown

to slow progression. If left untreated, CKD can progress to kidney failure and early

cardiovascular disease. Kidney failure treated with dialysis or kidney transplant is called

End-Stage Renal Disease (ESRD).
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3 Introduction

Chronic kidney disease is a condition caused by damaged kidneys filtering blood abnor-

mally that worsens over time. Usually, the kidneys are responsible for filtering waste and

fluid out of the blood to cycle to the rest of the body. Proper kidney function is essen-

tial to good health as it allows for stable blood pressure, healthy bones, and continual

production of red blood cells.

When the kidneys are damaged, waste, fluid, and toxins can build up in your blood/body

and cause severe damage to your health. Damage to the kidneys cannot be reversed and

can lead to kidney failure, also known as end-stage renal failure. Today, more than one in

seven Americans are estimated to have CKD, most unknowingly. Anyone can get CKD,

but those with diabetes, high blood pressure, and heart disease are more likely to de-

velop it, making Black Americans, Native Americans, Asian Americans, and Hispanics

highly affected. However, if doctors can detect the damage early and stop further kidney

degeneration, patients can manage their symptoms to lead relatively normal lives. Thus,

there are copious efforts to identify the progression of CKD through its five stages of

degeneration.

4 Biological Background

4.1 Pathology of CKD Degeneration

Chronic kidney disease is usually asymptomatic until it progresses to the later stages. It

is, therefore, not defined as CKD until there has been kidney damage present for more

than 3 months / 90 days. This damage is currently diagnosed through blood and urine

test results.

Kidney dysfunction is commonly measured by the glomerular filtration rate (GFR)

of less than 60 mL/min/1.73 m2 in the blood and increased urinary albumin excretion.

CKD has been categorized into 6 stages based on a patient’s GFR as follows:

Stage 1: 90 mL/min ≤ GFR

Stage 2: 60 mL/min ≤ GFR < 90 mL/min

Stage 3a: 45 mL/min ≤ GFR < 60 mL/min

Stage 3b: 30 mL/min ≤ GFR < 45 mL/min

Stage 4: 15 mL/min ≤ GFR < 30 mL/min

Stage 5: GFR ≤ 15 mL/min

From Ilyas [8], we have the following Modification of Diet in Renal Disease (MDRD)

formula to estimate Glomerular Filtration Rate (GFR) depending on age, gender, and

serum creatine (SCr):

GFR = 175 SCr−1.154age−0.203[0.742 (if female)], (4.1)

where the “if female” bracket represents selecting 1 if the patient is male or 0.742 if the

patient is female. Note that for this equation and the remaining GFR equations to be

presented, κ = 0.7 for females and 0.9 for males. Another formula is alluded to:

GFR = 141min{SCr/k, 1}α max{SCr, 1}−1.2090.993age[1.018 (if female)]. (4.2)
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Since race is correlated to CKD, we can include this feature in the GFR calculation by

the following equation:

GFR = 141min{SCr/k, 1}α max{SCr, 1}−1.2090.993age[1.018 (if female)]·[1.159 (if Black)]

(4.3)

where the “if Black” bracket represents selecting 1 if the patient is not Black or 1.159 if

the patient is Black. From all of these formulas, it is clear that the higher the SCr, the

lower the GFR, and the higher the stage of CKD.

While the disease presents asymptomatically initially, as the stages progress, more

symptoms become noticeable. These symptoms can be triggered by certain medications,

dehydration, infections, unstable BP, and drug abuse. As the kidneys stop filtering fluid

and waste properly, patients may experience:

• muscle cramps

• swelling of legs, ankles, or feet

• increased urination

• insomnia

• depression

• lost appetite

• congestive heart failure (CHF) symptoms

These worsening symptoms make early CKD diagnosis and intervention imperative.

Unfortunately, GFR is a measurement obtained only through lab tests, making diagnosis

and tracking inaccessible to most Americans. Therefore, many researchers have investi-

gated other health features that may aid CKD diagnosis and dysfunction detection.

5 Mathematical Background

Chronic kidney disease is a complex disease that impacts multiple organ systems through-

out the body. Diagnosis and detection are often made through lab data collection and

analysis. Mathematical modeling can allow researchers to quantitatively represent mul-

tiple components and scales of a system and investigate the dynamic behavior of these

components and their interactions over time under various conditions. Thus, many re-

searchers have been employing math modeling techniques to aid in CKD progress predic-

tion such as analytical methods, numerical methods, and machine learning algorithms.

5.1 Machine Learning Methods of Analysis

Kidney is known for its very complex structure and the underlying biology mechanisms

driving CKD is very limited as described in Section 4. Applying machine learning to

complex data has been widely encouraged. In biology, the goals are often predicting

accurately the underlying biological processes of interest when experimental data is not

complete, or explaining biological processes [5]. A meta-list of studies which have applied

machine learning algorithms using a CKD data set is recorded in [4]. There are two broad

types of tasks of machine learning: Supervised and unsupervised learning. The former

is used with labeled data that means both inputs/features and outputs are available.

Unsupervised learning can be used when data is not labeled. We can assess relationships,
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structure and characteristics from the data using both types of learning. Regression and

classification are considered supervised learning, while clustering is unsupervised. For

regression, we used eGFR as our output value to be predicted. We also considered the

five stages as a label when performing classification. We dropped the stages and tries to

recover them by teaching the model to identify patterns when clustering.

5.2 Cluster analysis via quadratic programming

Given that we possess N measurements for every patient, we normalize them for being

in the range [0, 1] and treat as a point in the N -dimensional space. Depending on the

CKD severity, the patients are divided in 5 stages, which form the clusters in the N -

dimensional space.

Hypothesis 1: The distance between each successive stage (cluster) is the same. In other

words, successive stages are equidistant concerning special metrics.

Hypothesis 2: The parameters of the metrics identify the significance of the correspond-

ing measurements.

In the N -dimensional space, the five points are formed from the five stages of CKD.

Each feature has N measurements (coordinates), each of which has a cluster which is the

average of the sizes of each individual for that specific parameter. We form five standards

of the known representatives from each stage: X1, X2, X3, X4, X5—the center points of

the clusters. Let the weighed “distance” between clusters j and k be as follows

d2jk = d2(Xj , Xk) =

N∑
i=1

wi · (xji − xki)
2,

where xji is the i-th component of point Xj . Weight parameters wi are yet unknown. For

the usual Euclidean metrics, wi = 1 and their sum is N . Then, on vector w, we impose

the following natural constraints

N∑
i=1

wi = N, wi ≥ 0. (5.1)

Following Hypothesis 1, we should minimize, with respect to w, the following func-

tional.

F (w) = (d212 − d223)
2 + (d223 − d234)

2 + (d234 − d245)
2 =

3∑
j=1

(
N∑
i=1

wi · zji

)2

(5.2)

where

zji = (xji − xj+2,i) · (xj,i − 2xj+1,i + xj+2,i).

In fact, as we see

d212 − d223 =

N∑
i=1

wi ·
(
(x1i − x2i)

2 − (x2i − x3i)
2
)
=

N∑
i=1

wi(x1i − x3i) · (x1i − 2x2i + x3i),
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and the substitution yields us a formula for zji in (5.2).

In order to minimize functional F with constraints

wi ≥ 0 and g(w) =

N∑
i=1

wi = N, (5.3)

we use Lagrange multipliers, ∇F = λ∇g, and obtain

(∇F )k = 2

N∑
i=1

ykiwi = Λ

where yki = z1iz1k + z2iz2k + z3iz3k and Λ is a constant N -dimensional vector Λ =

⟨λ, λ, . . . , λ⟩. Symmetric positive entries yki form N ×N matrix Y , and we arrive at the

linear system

Y w = Λ

with constraints (5.3). Since λ is undetermined, we can solve the system Y w = Λ for, say,

λ = 1 burdened with the only constraint w ≥ 0. Then, the solution can be normalized to

meet the constraint w1 + w2 + . . .+ wN = N .

Still open problem: Whether solution w has a distinguished sign, i.e., whether all wi

are either positive or negative?

Let w = argminF (w) ∈ RN with (5.1) taken into account.

Given additional normalized patient data x, we measure d(x,Xj) for 1 ≤ j ≤ 5 and

assign x to the nearest cluster (stage), say, X2. Then, we recalculate the average X2 and,

an instant later, weight vector w. Then we repeat this process as many times as we have

patient data. The found coordinates of vector w will demonstrate the significance level

for the corresponding measurement and, thus, the influence of every measurement on the

patient’s condition.

As such, we can find which parameters are most significant in determining the stage

of CKD for an individual and the additional parameters essential for assigning steps.

Remark. We expect that for every triangle XiXjXk with i < j < k, the longest side

is XiXk.

To get a head start on the computational optimization approach, we began with an

attempt at formulating the problem as a linear program. In essence, we tried altering the

quadratic objective function F (w) to obtain the linear objective function FL(w) but we

have not done so successfully.

5.3 Feature Selection for Predictive Importance/Correlation

GFR and creatinine levels are the most essential features in CKD stage prediction. This

should be somewhat intuitive since the stage of CKD is defined by GFR and since creati-

nine levels are used in a formula to calculate GFR. Since we know this, we are interested

in finding features that do not include GFR and creatinine to see how healthy models per-

form without them. From Kikuchi et al. [9] we know that low Body Mass Index (BMI)

and serum albumin levels are correlated with CKD progression. Albumin is a protein

made by the liver, and albumin levels can be measured in both blood and urine. Since

BMI can be easily calculated, and albumin can be roughly estimated with some at-home
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tests, these features may help be included. However, it is essential to note from [1] that

our understanding of how High BMI correlates with CKD is inconclusive.

The advancement of biomedical sensors and network technologies provides a widespread

progression in the Internet of Things (IoT) field as a system where intelligent medical

devices with unique identifiers can be connected for early diagnosis of severe conditions

such as CKD. A study by [7] uses a five-phase system including: (1) Collecting necessary

data with biomedical sensors and innovative multimedia medical devices, (2) Prepro-

cessing collected data, (3) Feature selection, (4) CKD prediction process based on the

existing classification methods, (5) Performance analysis via sensitivity, accuracy, and

specificity factors. The features used in their prediction model included twenty-six vital

signs that influence CKD, plus five clinical features (frequent urination, foot swelling,

insomnia, chest pain, and weight loss) as additional nominal variables. The extracted

rules for kidney functionality from their classification results included the following fea-

tures (other than GFR and serum creatinine) as necessary: age, blood pressure, weight

loss, foot swelling, insomnia, chest pain, frequent urination, diabetes mellitus, red blood

cells level, albumin, white blood cells count, anemia, presence of bacteria, potassium, and

specific gravity. The resulting decision tree classifier produces accuracy results of 96–97%

for three data sets.

6 Data Processing

6.1 Data Cleaning

There are common paths for imputation, each with its own set of implications. Here we

discuss these implications and explain our chosen imputation methods.

• Dropping Unknown Values: If we were to drop all rows with unknown values, we

would not only end up throwing away a lot of valuable data but would also (likely)

end up with a significantly smaller dataset or throw away all of our data altogether.

Even after dropping columns that may be less significant, we might still end up tossing

about 70% of the dataset [12].

• Imputation/Interpolation/Linear Regression: We are cautious with using impu-

tation with medical data, as we do not wish to make any assumptions about personal

data that may be unfounded [12].

• Quantization on Thresholds: The goal of quantizing a feature in one of our datasets

is to approximate the feature in question by restricting the amplitude of the values to

a prescribed set of values [12].

7 Exploratory Data Analysis

7.1 Correlation Analysis

In dataset [8], in addition to the stage of CKD for each patient, other parameters are also

provided. However, using all of these parameters to help predict a patient’s stage of CKD

is quite cumbersome. Instead, we only want to use a small subset of these parameters. In

order to determine which parameters would be most useful for the prediction, we want
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to determine if there is any significant correlation between any of the parameters and the

CKD stage. We do this through two methods: scatter plots and a correlation matrix.

7.1.1 Scatter Plots

For the numerical parameters in [8], we form scatter plots of the patients’ assigned value

to that parameter against their designated stage of CKD. As a note, for any missing values

of a parameter, i.e., labeled as a “?”, we convert this to NaN. Further, for each parameter,

we remove any NaN values. Note that for scatter plots for sodium and potassium, we

have removed a few outliers in order to more accurately capture the trend of the data in

comparison to CKD stage.

From Figure 1, we see possible positive correlations between blood glucose random

(bgr), blood urea (bu), potassium (pot) and CKD stage. Similarly, we see negative cor-

relations between hemoglobin (hemo), red blood cell count (rbcc), packed cell volume

(pcv), sodium (sod), and CKD stage. On the other hand, we are seeing no noticeable

trend between age and CKD stage. Also, for blood pressure (bp), it is unclear if there is

a weak positive correlation between it and CKD stage. Further, it is unlikely that we can

use age or blood pressure (bp) to help predict CKD stage. On the other hand, our results

suggest that decreasing levels of hemo, rbcc, pcv, and/or sod are possible indicators that

a patient is in the later stages of CKD. Increasing levels of bgr, bu, and/or pot may

also be indicators of this. Thus, hemo, rbcc, pcv, sod, bgr, bu, and/or pot may be good

candidates for predicting the CKD stage of a patient.

7.1.2 Correlation Matrix

In the previous subsection, we found that some variables are correlated with the CKD

stage. However, these scatter plots can only be used for the numerical data and we want to

be able to explore the nominal data as well. Thus, we form a correlation matrix for all the

parameters. Correlation matrices determine the correlation coefficients between any two

variables which can be indicative of possible relationships between the variables. These

coefficients take on values between -1 and 1. Positive coefficients indicate that an increase

in one variable can lead to an increase in the other. Negative coefficients indicate that an

increase in one variable can lead to a decrease in the other. The closer the magnitude of

the coefficient is to 1, the stronger the relationship. Forming a correlation matrix can help

us determine which variables would be good candidates for predicting the CKD stage.

In addition, the correlation matrix can help us determine which parameters are highly

correlated with each other. This phenomenon is known as multicollinearity. For example,

if two parameters are highly correlated with CKD stage but are also highly correlated

with each other, it can make it more difficult to determine the individual effects of using

these parameters in a model to predict the CKD stage. Thus, we would only need to

select one of these parameters in our model. We make use of Python’s corr. function in

order to produce the correlation matrix which uses Pearson’s coefficient and ignores any

NaN values. As a note, we consider any two variables to be highly correlated if their

correlation coefficient has a magnitude greater than or equal to 0.5 [6, 11].

From Table 2, we see that hemoglobin (hemo), red blood cell count (rbcc), and packed
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Figure 1. Scatter Plots to Determine Correlation Between Variables and CKD Stage

in [8].

cell volume (pcv) are the variables most highly negatively correlated with CKD stage.

In particular, the correlation coefficients have magnitudes in the range 0.71–0.79. At the

same time, these three variables are highly positively correlated with each other with

correlation coefficients of magnitudes 0.78 or 0.9. Given that hemoglobin is carried in the

blood through red blood cells and packed cell volume measures the percentage of blood

that is occupied by red blood cells, it is not surprising that these variables are highly

positively correlated with each other. Further, given that hemoglobin carries vital oxygen
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Raw value Cleaned value

rbc/pc
normal 1

abnormal 0

pcc
present 1

not present 0

race
African American 1

not African American 0

sex
m 1

f 0

htn/dm/cad/pe/ane
yes 1

no 0

appet
good 1

poor 0

class

not ckd stage 0

stage 1 stage 1

stage 2 stage 2

stage 3A stage 3

stage 3B stage 4

stage 4 stage 5

stage 5 stage 6

Table 1: Data cleaning of [8] for correlation analysis.

to organs such as the kidneys, we can see why hemoglobin (and rbcc and pcv) is highly

negatively correlated with CKD stage.

In addition, diabetes (dm), hypertension (htn), blood urea (bu), albumin (al), specific

gravity (sg), red blood cell (rbc), and pus cell (pc) are moderately correlated with CKD

stage where the former three variables are positively correlated with CKD stage while

the latter three are negatively correlated with CKD stage. In particular, their correlation

coefficients have magnitude in the range 0.52–0.66. At the same time, diabetes and hyper-

tension are positively correlated with each other with correlation coefficient 0.61. Given

that illnesses can cause other problems in the body, it can be seen why diabetes and

hypertension are positively correlated with CKD stage and with each other. Similarly,

given that variables like blood urea and albumin provide blood measurements indicative

of kidney function, we can intuitively see the correlations of these variables of CKD stage.

Overall, our results appear to support our conclusions from the previous subsection

as we see negative correlations between hemoglobin, rbcc, and pcv and CKD stage as

we do in Figure 1. Similarly, we see positive correlations between blood urea and CKD

stage. However, unlike in the previous subsection, there is not a high correlation between

sodium or potassium and CKD stage. Thus, in the future, if we were to use a machine

learning algorithm to predict the CKD stage of a patient, we will only consider variables
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Figure 2. Correlation matrix of data from [8]

Positive Correlation Negative Correlation

Albumin (al): 0.65 Hemoglobin (hemo) : -0.79

Hypertension (htn): 0.63 Packed cell volume (pcv): -0.78

Blood urea (bu): 0.6 Red blood cell count (rbcc): -0.71

Diabetes (dm): 0.56 Specific gravity (sg): -0.66

Red blood cell (rbc): -0.56

Pus cell (pc): -0.52

Table 2: Significant correlations of other variables to CKD stage (Figure 2); red/blue =

variables highly correlated with each other.

in Table 2. In particular, we would focus on using one of the three variables, hemoglobin,

rbcc, pcv, for such an algorithm due to their high correlation with CKD stage.

7.1.3 K-means

K-means methods can be used to find how subsets of a gathered dataset can be strongly

correlated with each other in terms of a subset of desired variables. We used K-means

algorithms on the Hong dataset using the parameters we found correlated most strongly

with eGFR (excluding creatinine) and found that K-means clusters did not seem to
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Figure 3. K-means with significant parameters and k = 10.

Feature Weight

Blood Urea Nitrogen Level∗ 0.253329

Anion Gap∗ 0.201570

Chloride Level∗ 0.180366

Red Blood Count∗ 0.092631

Hemocrit Level∗ 0.070413

Chloride Level∗ 0.045939

Bicarbonate Level∗ 0.026342

Potassium Level∗ 0.024307

Sodium Level∗ 0.022485

Platelets Level∗ 0.020696
∗ median measurement used.

Table 3: Key features (including lab measurements) used to predict CKD stages, and

their relative weights.

correlate to classes of CKD (or equivalently eGFR). Here is one example of one such

plot.

7.2 Random Forest

Random forest algorithms (also known as random decision forests) are ensemble learning

methods for classification, regression, and other tasks that operate by constructing a

multitude of decision trees at training time. For classification tasks, the output of the

random forest is the class selected by most trees. For regression tasks, the mean or

average prediction of the individual trees is returned. Random decision forests correct

for decision trees’ habit of over-fitting to their training set. Random forests generally

outperform decision trees, but their accuracy is lower than gradient-boosted trees, which

Vironix has used in the past for CKD prediction. However, performance can be affected

by data characteristics (Wiki).

https://en.wikipedia.org/wiki/Training,_validation,_and_test_data_sets
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Feature Weight

Age 0.195009

Number of In-patient Admissions∗∗ 0.096965

Number of Emergency Department Visits∗∗ 0.092732

Systolic Blood Pressure∗ 0.089689

Race: White or Caucasian 0.075582

Albumin∗ 0.057300

Anemia 0.056261

Race: Black or African American 0.048469

Pulse∗ 0.047619
∗ median measurement used.

∗∗ within the past year.

Table 4: Key features (including lab measurements) used to predict CKD stages, and

their relative weights.

7.3 Gradient Boosting

Gradient boosting is a supervised machine-learning technique similar to a random for-

est. Like other boosting algorithms, the model is built stage-wise with decision trees.

However, it allows for a loss function to be minimized. This generalization means that it

performs very well and tends to outperform random forests. We use XGBoost, which is

a library that implements boosted trees in an optimized way. Furthermore, XGBoost

automatically handles missing values in the dataset: branch directions are learned dur-

ing training, which is another advantage of using gradient boosting over random forest

algorithms. Using XGBoost, we find that the most significant features to predict CKD

stages in general (including lab results) in Table 5, and the most significant features

excluding lab measurements (just at-home measurements) can be seen in Table 6.

7.4 Visualizations of Health Parameters as a Function of the Disease Stage

The following variables were identified as important features in Dataset 2 using the

insights from literature study, correlation analysis, and initial machine learning models.

The features were then grouped into two sets: At-home and Lab Generated. The At-

home variable set is identified based on the assumption that if a patient has an additional

condition, they would know that and hence would be able to identify themselves as having

that concern based on their medical history. Tables 7 and 8 show the features and whether

or not they were lab generated using a binary indicator, where Lab Generated=1 would

indicate that the feature is in the Lab Generated set and 0 in the At-home variable set.

In trying to study the characteristics of each stage of CKD, we created some visu-

alizations to show the severity of CKD exhibits in the form of some at-home features.

Figure 4 shows that as age progresses, eGFR levels tend to go down for both males and

females, however the decline for males is slightly stronger. Figure 5 shows that heart

rate of patients tends to vary for lower levels of eGFR and systolic blood pressure also
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Feature Weight

Age 0.05650321

Number of In-patient Admissions∗∗ 0.040257808

Race 0.048045773

Systolic Blood Pressure∗ 0.009659265

Anion Gap ∗ 0.36311668

Blood Urea Nitrogen Level∗ 0.120267235

Calcium Level∗ 0.0552984

Chloride Level∗ 0.21430616

Hematocrit Level∗ 0.01613212

Potassium Level∗ 0.07641336
∗ median measurement used.

∗∗ within the past year.

Table 5: Key features (including lab measurements) used to predict CKD stages, and

their relative weights.

Feature Weight

Age 0.10409631

Albumin Level∗ 0.04753141

Anemia 0.20151092

Diastolic Blood Pressure Level∗ 0.06589365

Glucose Level∗ 0.03212508

Number of In-patient Admissions∗∗ 0.05681709

Number of Emergency Department Visits∗∗ 0.2665141

Race 0.1642751

Systolic Blood Pressure∗ 0.061236244
∗ median measurement used.

∗∗ within the past year.

Table 6: Key at-home features (excluding lab measurements) used to predict CKD stages

and their relative weights.

increases as eGFR goes lower. Temperature readings also show higher variation at lower

eGFR levels for both males and females as depicted in Figure 6.

The difference across the stages of CKD can be seen in reference to the prevalence of

anemia, number of emergency room visits, and number of in-patient admissions in the

last year from Dataset 2 in Figures 7, 8, and 9 respectively. An interesting observation

across these charts is that males generally show more symptoms of severity of CKD but

females show higher prevalence of anemia as CKD deteriorates. Figure 9 also illustrates

how the transition from Stage 2 to Stage 3A shows a spike in hospital admissions for the

same patient, highlighting the need for intervention during Stage 2 to prevent escalation

of the disease. Note that the violin plot used here normalizes values.
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Feature Description Type Lab Generated

age Age of patient Numeric 0

acrenlfail History of Acute and unspecified renal failure Binary 0

albumin Median Albumin levels Numeric 0

anemia History of Deficiency and other anemia Binary 0

cardiaarrst History of Cardiac arrest and ventricular fibrillation Binary 0

cc breathingdifficulty Chief complaint breathing difficulty Binary 0

cc breathingproblem Chief complaint breathing problem Binary 0

cc chestpain Chief complaint chest pain Binary 0

cc chesttightness Chief complaint chest tightness Binary 0

cc edema Chief complaint edema Binary 0

cc fever Chief complaint fever Binary 0

cc footswelling Chief complaint foot swelling Binary 0

coronathero History of Coronary atherosclerosis Binary 0

dbp Diastolic Blood Pressure Numeric 0

diabmelnoc History of Diabetes mellitus without complication Binary 0

diabmelwcm History of Diabetes mellitus with complications Binary 0

ethnicity Ethnicity Categorical 0

gender Gender Binary 0

glucose Median Glucose levels Numeric 0

htncomplicn History of Hypertension with complications Binary 0

kidnyrnlca Cancer of kidney and renal pelvis Binary 0

n admissions number of in-patient admissions in the past year Numeric 0

n edvisits number of ED visits in the past year Numeric 0

nauseavomit Nausea and vomiting Binary 0

o2 device At home oxygen concentrator Binary 0

otdxbladdr History of Other diseases of bladder and urethra Binary 0

otdxkidney History of Other diseases of kidney and ureters Binary 0

othheartdx History of Other ill-defined heart disease Binary 0

pulse Pulse rate Numeric 0

race Race Categorical 0

resp Respiration rate Numeric 0

sbp Systolic blood pressure Numeric 0

temp Temperature (F) Numeric 0

triage vital hr Heart rate Numeric 0

whtblooddx History of Diseases of white blood cells Binary 0

Table 7: At-home features identified as important in detecting CKD stages.

8 CKD Predictions

8.1 Identification of patient states that indicate a high risk of transition

from one state to another

We performed binary classifications for each consecutive pair of stages (stagei and

stagei+1). There are 5 pairs in total: stage 1 to stage 2, stage 2 to stage 3A, stage

3A to stage 3B, stage 3B to stage 4, and stage 4 to stage 5. The patient states that

indicate a high risk of transition from one stage to another are given by the most im-

portant features when classifying the current stage to the next. LASSO (least absolute

shrinkage and selection operator) is a penalized modeling approach and has been used

in medical settings [10]. It finds the set of coefficient estimates that best fit the data
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Feature Description Type Lab Generated

aniongap Anion gap of blood Numeric 1

bun Blood urea nitrogen Numeric 1

calcium Calcium levels Numeric 1

chloride Chloride elvels Numeric 1

c02 Carbon dioxide in blood Numeric 1

creatinine Creatinine Numeric 1

globulin Globulin level in blood Numeric 1

hematocrit Hematocrit Numeric 1

hemoglobin Hemoglobin Numeric 1

magnesium Magnesium Levels Numeric 1

mch Mean Corpuscular Hemoglobin Numeric 1

mcv Mean Corpuscular Volume Numeric 1

mpv Mean Platelet Volume Numeric 1

platelets Platelets count Numeric 1

potassium Potassium Levels Numeric 1

rbc Red blooc count Numeric 1

sodium Sodium levels Numeric 1

wbc White blood count Numeric 1

Table 8: Lab generated features identified as important in detecting CKD stages.

Figure 4. eGFR Levels in Dataset 2 against Age and Gender of patients.
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Figure 5. eGFR Levels in Dataset 2 against Pulse and Systolic blood pressure of patients.

Figure 6. eGFR Levels in Dataset 2 against Temperature.
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Figure 7. Prevalence of Anemia at each

CKD Stage in Dataset 2.

Figure 8. Number of ER visits at each

CKD Stage in Dataset 2.

Figure 9. Number of inpatient admissions at each CKD Stage in Dataset 2.

where up to a certain number of nonzero coefficients are only allowed. Support vector

machine is a supervised learning method used for classification and regression models.

For classification, it is call support vector classification which finds a separation plane

where the distance between the data points from each class to the plane is maximized [3].

We carried out LASSO on linear support vector classification to classify each consecutive

pair of stages in dataset 1 [8]. After cleaning the data as elaborated in Section 6.1, two
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1 to 2 2 to 3A 3A to 3B 3B to 4 4 to 5

LinearSVC 0.6 0.6 0.6 0.6 0.7

Table 9: Accuracy level of linear support vector classifier for each consecutive pair of

stages.

Stage 1 to 2 Stage 2 to 3A Stage 3A to 3B Stage 3B to 4 Stage 4 to 5

appetite race race race race

coronary artery disease anemia pus cell clumps red blood cell count blood glucose random

race pedal edema red blood cell count pus cell clumps pus cell

pus cell clumps red blood cell count potassium diabetes mellitus coronary artery disease

potassium coronary artery disease anemia pedal edema diabetes mellitus

Table 10: Feature importance of all five consecutive pairs of stages with linear support

vector classifier.

consecutive stages are considered as the response variable to be separated including all

the features. For each consecutive stages pair, we performed a validation set approach for

model performance that is we randomly divided the dataset into half for training set and

validation set. We also record the accuracy assessment with 100 repetitions to get 100

misclassification error rates and averaged them for assessing the prediction performance

as the dataset is small.

Table 9 summarizes the accuracy of the model on each pairwise consecutive stages.

Stage 4 to stage 5 has the highest accuracy 0.7 compared to other pairs (0.6 accuracy).

That means, classifying patients from stage 4 to stage 5 is easier than identifying patients

from among one lower stage to another.

Table 10 records the five most important features for each consecutive pairwise stages

and Figure 10 displays the importance rates of all the features. A high risk of stage 1

patients transitioning to stage 2 depends on the appetite, race, pus cell clumps and

potassium level. Race appears as important when identifying high risks of transitioning

from one state to another for all five pairs. Red blood cells count, race, and pus cell

clumps are important when assessing risks of transitioning from low stage to high stage

of CKD (stage 2 to stage 3a, stage 3a to stage 3b, and stage 3b to stage 4).

For each pair, the accuracy metric and confusion matrix were also recorded for other

classification learning, such as, random forest (RF) 7.2, gradient boosting classifier (GB)

7.3, and multi-layer perceptron classifier (MLP) [13]. For each pair we used confusion

matrix and predictions performance metrics to select their ‘best’ model, that is, with high

accuracy metric and reasonable confusion matrix (current stage stagei is misclassified

more than the next stage stagei+1). Table 11 summarizes the selected model for each

pair along with their respective accuracy. Separating each pair using their respective

selected model, Figure 11 shows that blood urea and age are important to assess risks of

transitioning from one stage to another for all consecutive pairs of stages. Sodium and red

blood cells can be useful in distinguishing consecutive pairs of stage 1 to stage 2, stage 2

to stage 3a, and stage 3a to stage 3b. Potassium, hemoglobin, red blood cells count, and
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Figure 10. Feature importance for each consecutive pair of stages of dataset 1 [8] based

on linear support vector classifier.

Stage 1 to 2 Stage 2 to 3A Stage 3A to 3B Stage 3B to 4 Stage 4 to 5

Selected Model RF GB RF GB RF

Accuracy 0.6 0.7 0.7 0.7 0.8

Table 11: Selected models of each pair from linear support vector classifier, random forest,

gradient boosting classifier, multi-layer perceptron classifier, along with their respective

accuracy.

blood glucose random are important when assessing risks of transitioning from stage 3b

to stage 4 and from stage 4 to stage 5.

In summary, blood urea, age, and race are very important when assessing risks of

transitioning from one state of CKD to another, which can all be checked from home. In

addition, for low stages (stage 1 and 2), checking for red blood cells and sodium level can

be useful when identifying their next stage transitioning risks. For high stages (stage 3a

and above) blood glucose random and hemoglobin should be tracked down. The higher

the state level is, the many the features that need to be included when assessing the risks

of transitioning from one state to another. Fortunately, these features can be mainly

tested from home.
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Figure 11. Feature importance for each pair of consecutive stages in [8] based on their

selected classification model.

8.2 Creatinine prediction

As described in Section 4, a patient’s CKD stage is determined by their GFR level. This

GFR level is calculated using (4.3). To predict a patient’s CKD stage, we first predict a

patient’s creatinine level and then use the (4.3) and GFR bounds to classify a patient’s

stage. We use linear regression and random forest regression to predict creatinine levels

using the features given in [8].

From the Ilyas data [8], we select the 379/400 patients that have a creatinine reading,

use a one-hot encoder for the nominal variables (including NaN values as a separate value

to represent missing data), impute the numerical variables with the column mean, and

standardise each numerical variable to mean 0 and standard deviation 1.

We run linear regression and random forest regression (with grid search) with the log

of creatinine as our dependent variable. Using the log of creatinine eliminates predictions

of negative creatinine as well as providing better prediction for low levels of creatinine.

In Table 12 we report the mean square error and R2 score for our test and train sets,

generated with a 25-75 split. In Figures 12 and 13 we show the true against predicted

log creatinine.

We continue with random forest regression and investigate feature importance. A key

question from Vironix is whether we can predict CKD degeneration using at-home vari-

ables. Our feature importance analysis in Figure 14 reveals blood urea is the most impor-
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Metric Linear regression Random forest

Test Train Test Train

MSE 0.202 0.153 0.160 0.213

R2 score 0.733 0.797 0.739 0.772

Table 12: Linear regression and random forest regression mean square error and R2 score

for the test (75%) and train (25%) data-sets.

tant feature. A naive Amazon search reveals home test kits for blood urea which reveals

some promise for Vironix to do at-home prediction of CKD degeneration.

Finally, we use (4.3) to map predicted creatinine to CKD stage. We show the confusion

matrix in Figure 15 with an overall accuracy of 66.5% using random forest regression.

We see that we perform worst on Stage 1 and 3A and which suggests these are difficult

stages to differentiate from others. We over-predict more than under-predict and this is

what we would want a model to do, to emulate cautious doctors.

With this small data set, we are able to get good prediction of a patient’s creatinine

level and reveal an at-home measurement (blood urea) as the most important feature for

this prediction. This preliminary regression analysis should give Vironix confidence that

they are able to develop models to accurately answer their fundamental questions with

CKD and use machine learning to facilitate at-home diagnoses.

For future work, to predict degeneration of CKD, we could use the continuous variable

‘GFR’ to quantify if a patient is at risk of transitioning into the next stage. Ideally this

classification would incorporate temporal data to follow a patient’s progression through

the disease. However with the current data, one could map the GFR to a continuous

‘stage’ variable which could be a linear interpolation of Stage 1-5 at the boundary GFR

level. Further work could also investigate using neural networks for creatinine prediction

as well as restricting the features to only at-home measurable features.

8.3 Health states indicative of end-stage renal disease

In Table 13, we compared three different algorithms: random forest, gradient boosting,

and a tree-based bagging method. We evaluated their performance using four metrics for

all the different stages (weighted): accuracy, precision, recall, and F1 score. We also mea-

sured the performance of different algorithms at each stage. Table 13 is an updated table

including the evaluation results for each algorithm at various stages for their accuracy,

sensitivity (recall, NPV), specificity and precision (PPV).

9 Conclusions

We have managed to make significant headway in answering many of the fundamental

questions that we set out to answer. Collections of patient lab data, biometric readings,

symptoms, and baseline health factors were found to indicate deterioration of CKD. We
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Figure 12. Linear regression results showing the predicted creatinine levels against true

creatinine for the test data (left) and train data (right) using a 75-25 train-test split on

the Ilyas data [8].

Figure 13. Random forest regression results showing the predicted creatinine levels

against true creatinine for the test data (left) and train data (right) using a 75-25 train-

test split on the Ilyas data [8].

Figure 14. Random forest regression feature importance for numerical variables.



Vironix MPI 2023: CKD Prediction 25

Figure 15. Random forest regression CKD stage confusion matrix.

Algorithm Stage Accuracy Sensitivity Precision Specificity

Random forest stage 1 0.96 0.77 0.525 0.97

stage 2 0.90 0.52 0.46 0.94

stage 3A 0.87 0.70 0.11 0.88

stage 3B 0.75 0.41 0.64 0.90

stage 4 0.82 0.47 0.25 0.85

stage 5 0.82 0.67 0.92 0.95

Gradient boosting stage 1 0.49 0.30 0.64 0.99

stage 2 0.47 0.0 – 1.0

stage 3A 0.46 0.03 0.76 0.99

stage 3B 0.44 0.089 0.29 0.94

stage 4 0.45 0.41 0.31 0.77

stage 5 0.52 0.80 0.39 0.42

Tree-based bagging stage 1 0.98 0.86 0.83 0.99

stage 2 0.95 0.72 0.73 0.97

stage 3A 0.91 0.72 0.60 0.94

stage 3B 0.87 0.66 0.73 0.93

stage 4 0.89 0.76 0.73 0.93

stage 5 0.93 0.88 0.90 0.96

Table 13: Algorithm comparison among stages.
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correlated several metrics to eGFR and creatinine levels and identified several promis-

ing metrics to be used for remote monitoring when lab data isn’t available. A set of

health states were classified as being higher risk of CKD. Performance differences be-

tween various machine learning classifiers were provided, but we were unable to provide

an analytical approach for which we would compare our classifiers to.
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