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CHAIR’S WELCOME
Dear Colleagues and Friends,

It has been a great pleasure serving on the SIAG/FME executive over the last
several years. Since I first began tenure on the executive seven years ago, we have
seen the community grow in size, diversity, and research directions. The talent that
we have, and that we see coming into our community, is outstanding in its in ability
to look at old problems in new ways, tackle new problems with the wide array of
tools and techniques that we have at our disposal, and develop new methodology
for how to approach mathematical problems that are rooted in application.

Currently, at the heart of much innovation is how we are incorporating data into
our modeling and analysis. However, it is not just data-driven analysis that is
seeing much attention and energy, areas such as risk measures, volatility modeling,
systemic risk, stochastic control, mean-field games, principal-agent problems, and
their applications is full of interesting new problems and activity. This diversity of
the ecosystem within our community is what makes it so vibrant and interesting.

I would like to highlight the exciting announcement from the SIAM Journal on
Financial Mathematics editor in chief that the journal will now be accepting SIFIN
Short Communications (of 10 pages or less). As well, we have two new op-ed
pieces, one by Álvaro Cartea and Charles-Albert Lehalle on “Optimizing Flows of
Financial Institutions” and the other by Martin Larsson on “Stochastic Convolutions
in Finance: Rough Volatility, Momentum, and Energy”. Please, continue to send us
your wide-appeal op-ed pieces for consideration.

Have a wonderful remainder of the academic year and thank you all for the
continual support of the SIAG/FME community. . . it has been a pleasure to serve!!!

Kind regards,

Sebastian Jaimungal,
Chair SIAG FME

Francesca Biagini,
University of

Munich, Germany
Secretary

Agostino Capponi,
Columbia University,

USA
Program Director

Sebastian Jaimungal
University of

Toronto, Canada
Chair

Tim Leung,
University of

Washington, USA
Vice Chair
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SIAM FME 19 CONFERENCE REPORT

Daniel Lacker

Mykhaylo
Shkolnikov

Philippe
Casgrain

In June, we had our biennial meeting held at the Univer-
sity of Toronto. Registered attendance was 375 — the
largest solo SIAM FM meeting by far! The themes in the
conference reflected the rapid evolution that the field is
experiencing, and the diversity of research interests within
our growing community. The conference program this year
featured two tutorials, one focused on topics of machine
learning in finance, and the other centered around simu-
lation methods in Finance; two industrial mini-symposia;
two panel discussions (one on systemic risk and the other
on Fin Tech and AI); and a number of sessions covering
both emerging topics, such as machine learning and finan-
cial technology, as well as core topics including systemic
risk, mean-field games, and stochastic control.

Three SIAG prizes were awarded during the conference.
The SIAM Early Career Prize was awarded jointly to
Daniel Lacker and Mykhaylo Shkolnikov, while Philippe
Casgrain received the Conference Paper Prize. A third
prize was introduced this year to recognize the best stu-
dent poster. The co-winners of the poster competition
were Chiheb Ben Hammouda and Raul Guarini.

The Conference also featured the SIAG Business Meet-
ing. The discussions primarily focused around the loca-
tion for the next meeting, as well as the time schedule of
events during the conference. As the SIAM-FME commu-
nity grows, it becomes important to find efficient ways to
run the conference: lighter days but longer lasting con-
ference or full but less days. The Activity group also dis-
cussed ideas and approaches to attract sponsorship from
the private sector to support the organization of future
conferences.

The Activity group also discussed its new developed initiatives, including
the intention of organizing a Gene Golub summer school in Financial Math-
ematics to attract young talent to the field and raise awareness. In addition,
the Activity Group highlighted the intention of broadening the visibility
of the SIAM-FME group through the organization of clusters and tracks
at major conferences, building on the success of the 2018 SIAM Annual
Meetings and of the 2019 ICIAM.

NEW SIAM FELLOW
Michael B. Giles, University of Oxford, is being
recognized for contributions to numerical analysis
and scientific computing, particularly concerning ad-
joint methods, stochastic simulation, and multilevel
Monte Carlo.

Society for Industrial and Applied Mathematics rec-
ognizes distinguished work through Fellows Pro-
gram. These distinguished members were nomi-

nated for their exemplary research as well as outstanding service to the
community. Through their contributions, SIAM Fellows help advance the
fields of applied mathematics and computational science. These individuals
will be recognized for their achievements during the SIAM Annual Meeting,
happening July 9-13 in Portland, OR.

SIFIN SHORT
COMMUNICATIONS

On June 4, 2019 in Toronto, during
the meeting of the editorial board of
the SIAM Journal on Financial Mathe-
matics (SIFIN), it was decided to cre-
ate a “Short Communications” section
of the journal. Submissions to this
section should not be longer than 10
pages. They will be reviewed under
the same standards of quality than for
regular articles, but the review time
will be kept under one month with
the only possible outcomes “accept”,
“minor revision”, or “reject”, but no
“major revision”.

Of course, any area of financial math-
ematics is welcome in this new sec-
tion, but one of the intents was to pro-
vide a venue for the growing number
of submissions dealing with machine
learning based algorithms applied to
financial problems (the title does not
need to start with “Deep. . . ” but it is
a trend I am seeing!)

I am looking forward to receiving your
short communications.

To submit, select “Short communica-
tions” as the manuscript type on the
online submission form. For more in-
formation, please visit the SIFIN In-
structions for Authors page.

Jean-Pierre Fouque,
SIFIN Editor-in-Chief

ICIAM 2019
CONFERENCE REPORT

Financial Math is well represented
at the 9th International Congress on
Industrial and Applied Mathematics
(ICIAM), which took place in Valen-
cia, Spain, this summer. SIAG-FME
organized a dozen minisymposia with
modern topics including, machine
learning in finance, mean field games,
calibration & inverse problems, invest
rate models, as well as insurance and
power markets. These thematic min-
isymposia, along with a number of
contributed sessions, spanned over
five days with hundreds of partici-
pants during the conference.
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OPTIMIZING FLOWS OF FINANCIAL INSTITUTIONS

Álvaro Cartea1 and Charles-Albert Lehalle2

1University of Oxford
2Capital Fund Management

The last twenty years have seen a surge in the academic lit-
erature that studies financial flows and the trading activity
of stakeholders in financial markets, e.g., asset managers,
banks, proprietary firms. The literature on optimal trading
employs techniques that are at the interphase of empirical
modeling, stochastic control, data science, and stochastic
games, and develops tools to cope with the ever-changing
financial landscape and regulatory requirements. These
tools provide stakeholders a number of ways to deal with
risks associated to their business and to deal with liquidity
constraints that affect their trading strategies.

Stakeholders bear the costs of trading in and out of posi-
tions to keep their risk profile and exposure within a target.
This target could be self-imposed or could be enforced by
financial authorities. Ideally, stakeholders have access to
optimal strategies that minimize the impact that trading
costs and other frictions have on their profits. Without
clearly designed tools to optimize flows and trading activ-
ity, it would be difficult for market participants to meet
regulatory requirements, and financial authorities would
feel less confident in enforcing strict risk controls if the
market lacks mechanisms to unwind risk in an timely and
cost-effective manner.

Financial institutions sell and buy products that are ex-
posed to fluctuations in the prices of other instruments
and securities, e.g., equity, bonds, commodities, and are
also exposed to variations in macroeconomic variables and
indicators such as GDP growth, unemployment, and infla-
tion. A recurrent question is how to hedge or mitigate the
exposure to these risks. The early work of Louis Bachelier
Bachelier (1900), followed almost one century later by
that of Black and Scholes (1973) and Merton et al. (1973),
shows how to hedge risks with a replication strategy.

Although this procedure, known as risk replication, has
well-known limitations, it was instrumental in the devel-
opment of financial markets in the 80s and 90s. Key to
replicating risk exposures is the availability and liquidity
of standardized products – liquidity refers to the ability
of trading large quantities of the asset over short periods
of time with minimum price impact. Liquidity may be
considered the "fuel" of financial markets and it is at the
centre of the discussions and policies of regulators and an
important field of study for academics, including Nobel
prize recipients (see for instance Engle et al. (2012)).

Financial flows to trade large orders are typically con-
trolled by a trading speed: trading slow minimizes trading
costs (e.g., those that stem from the liquidity available at
the best prices in the market), but is exposed to adverse

price changes over the trading window, while trading fast
reduces the exposure to price changes, but increases trad-
ing costs. A classical approach to determine the optimal
trading speed when executing large trading flows is to
formulate the problem as a stochastic control problem,
where the state variables are (i) the remaining quantity
of the asset or contract to buy or sell, and (ii) the cash
account of the investor, whose value is highly sensitive to
price pressures implied by the trading speed; and (iii) the
price of the traded asset, which is impacted by the buying
and selling pressure of the investor.

In financial markets, the price of a traded instrument is ob-
tained using a double auction process, where the buy and
sell pressure of market participants plays a key role in how
clearing prices are determined. Specifically, throughout
this process, stakeholders constantly digest information
and update their beliefs to make decisions (i.e., adjust
their trading speed) that affect the supply and demand
of the instrument, which determine at each point in time,
its equilibrium price. This price formation process can
be modelled as a liquidity game, where market partici-
pants provide and consume liquidity in a mean field-like
pool of liquidity. The emptiness or fullness of the liquid-
ity pool determines the instantaneous cost of buying and
selling financial products. While the first mathematical
frameworks for optimal trading focused on one trader and
considered the aggregation of all other participants as a
"stationary mean-field", most often modelled as a mar-
tingale process, recent work has shown how to take into
account the simultaneous and anticipative decisions of all
traders using Mean Field Games. The first article in this
direction, Lachapelle et al. (2016), is co-authored by a
1994 Fields medalist. It is rare that an academic domain
attracts the attention of both Nobel and Fields recipients!
Beyond this anecdote, the combination of financial un-
certainty and backward optimization in a game driven
framework is an interesting challenge. For example, one
of the theories put forward to explain the flash crash in
May 6 2010 postulates that initial price declines triggered
by the actions of one large investor were exacerbated by
high-frequency traders. These traders used sophisticated
algorithms and technology to quickly make trading deci-
sions based on the state of the limit order book, and could
be seen as interacting with the mean-field represented by
the universe of small end investors.

In practice, to compute an optimal trading speed, insur-
ance companies and asset managers (which are allocating
pooled capital on equity shares, corporate and government
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bonds, currencies, etc.) implement solvers of optimization
problems, which draw knowledge from the large body of
academic literature in finance. Also, investment banks
and market makers implement similar solvers to control
the speed at which they take positions in the market to
offsets their risks. While these risk replication strategies
contribute to the provision of liquidity in financial markets
and to an efficient allocation of risks, their development
and execution require effort and resources. For example,
one key ingredient, which is no small task, is to estimate
transaction costs and other frictions in the market. This
requires companies to record, store, and process unprece-
dented large amounts of data (they are around 50,000
trades per day for a liquid stock in exchanges where in-
formation is updated at a micro-second frequency). It
also requires computer power to run and implement opti-
mization solvers in real-time and at different time scales
– most of the time a risk-control driven layer of optimiza-
tion updates its decisions for horizons of few hours, while
interactions with the double-auction games take place at
horizons of few seconds.

Moreover, a choice has to be made between: an iso-
lated optimization process for each traded instrument
or a global optimization process that involves all avail-
able instruments; the former is faster and the latter is
the optimal (first best), but much more difficult to design
and carry out. The industry largely relies on academic re-
sults to develop models and frameworks and to implement
solutions. Beyond the hundreds of thousands of results
appearing on Google Scholar under the “optimal trading”
label, books such as those by Cartea et al. (2015), Guéant
(2016) and Lehalle et al. (tion), summarize the state of
the art, so that the industry can incorporate cutting-edge
knowledge in their day-to-day trading decisions.

Last but not least, optimal trading does not escape from
the recent rise of Machine Learning (ML). A recurrent
topic one has to address is how to build short-term pre-

dictors of: price innovations, provision and demand of
liquidity, see Cartea et al. (2018). These predictors em-
ploy information from many sources, including the current
and recent auctions, and the predictors are designed so
that they can be implemented within an optimal trading
process. Notice that it is not obvious how to account for
the uncertainty attached to ML generated models in more
classical dynamic optimizations. And it seems that ML-
inspired approaches, like Reinforcement Learning, open
the door to obtaining numerically tractable solutions of
high-dimensional stochastic control problems.
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STOCHASTIC CONVOLUTIONS IN FINANCE: ROUGH VOLATILITY,
MOMENTUM, AND ENERGY

Martin Larsson

Carnegie Mellon University

Abstract

Stochastic differential equations are the bread and butter of financial mathematics. But they are not always the
most appropriate tool. In these brief musings I train the spotlight on one of their lesser known cousins: stochastic
convolution equations. How and why can stochastic convolutions add value in financial modeling? Read on and find
out.

Stochastic differential equations (SDEs) are the bread
and butter of financial mathematics. Just think of the
Black–Scholes–Merton model, where the price of a stock
or an index is modeled by geometric Brownian motion,
dSt/St = µdt + σdWt. Or, think of the spot variance in
the Heston model, dvt = λ(θ − vt)dt+ η

√
vtdBt. In fact,

the majority of all continuous-time stochastic models used
in financial mathematics—many of them highly complex—
are specified in terms SDEs.

This is not always a natural choice. Models based on
SDEs share properties that are sometimes at odds with the
reality they are meant to describe.

A prime example is the characteristically squiggly appear-
ance of the sample paths of Brownian motion. These
sample paths are “rough”; for instance, they are nowhere
differentiable. This is good news for someone looking to
model the erratic swings of stock prices. But someone
interested in the erratic swings of stock price volatilities
might be less impressed. To them, Brownian motion might
look too smooth! In fact, mounting empirical evidence sug-
gests that equity volatilities are far more oscillatory than
Brownian motion; see Gatheral et al. (2018), Bennedsen
et al. (2016), and Fukasawa et al. (2019). SDEs, like the
Heston spot variance, will fail to capture this striking level
of roughness. Other models are needed.

Here is one possibility: model the spot variance vt by

vt = exp

(∫ t

0

1

(t− s)γ
dBs

)
, (1)

where γ is a positive parameter and, of course, B is stan-
dard Brownian motion. This particular model is a bit too
simplistic to be useful in practice. Still, it captures the
essence of the rough fractional stochastic volatility (RFSV)
model of Gatheral et al. (2018), and the rough Bergomi
model of Bayer et al. (2016).

To understand why, look again at (1). One could be for-
given for thinking that this looks rather similar to ge-
ometric Brownian motion. In reality, the two are very
different: unlike geometric Brownian motion, (1) involves

a stochastic convolution of the Brownian motion. This is
an expression of the form∫ t

0

K(t− s)dBs (2)

for some deterministic function K (a.k.a. “kernel”).
What’s more, the kernel K(t− s) = (t− s)−γ in (1) has a
singularity at t− s = 0. This makes the convolution (and
hence vt) extremely sensitive to increments dBs in the
recent past. As a result, the sample paths are exceedingly
rough.

Mathematically speaking, while not entirely trivial, the
model (1) can be analyzed with only moderate effort. A
big reason is that there is an explicit formula for vt. But
there are natural situations where no such formula ex-
ists. The rough Heston model of El Euch et al. (2018) and
El Euch and Rosenbaum (2019) models the spot variance
as the solution of a stochastic convolution equation, namely

vt = v0 +

∫ t

0

K(t− s)
(
λ(θ − vs)ds+ η

√
vsdBs

)
. (3)

If it were not for the kernel K, this would have looked
like the usual Heston model written in integral form. But
the kernel is there, and with it, a t inside the integrand in
addition to the t in the upper integration limit. This dras-
tically alters the mathematical structure of the equation.
Moreover, in contrast to (1), the process vt also appears
on the right-hand side. We therefore have a bona fide
equation for vt, and must first ask whether a solution even
exists and is unique, let alone what its properties are.

Much of this has been done, and lots is known about (3).
We know that a solution exists, is unique in distribution,
remains nonnegative, has a characteristic function that
we can compute, and so on. Still, even for this basic spec-
ification, it is not known (to the best of my knowledge)
whether pathwise uniqueness holds, or whether the solu-
tion remains strictly positive. For SDEs, the answers to
these questions have been known for half a century thanks
to the work of Feller, Yamada, Watanabe, etc.
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K(t− s)

t− s

(a) Hump-shaped kernel K

ρ(t− s)

t− s

(b) Resolvent kernel ρ of K′

Now back to modeling. We have
seen that stochastic convolutions can
be effective in creating models with
very rough sample paths, which is im-
portant in some applications. How-
ever, the kernel K in (2) leads to an-
other phenomenon as well: history
dependence. In financial language,
Brownian increments dBs represent
“shocks”, and the integral in (2) ag-
gregates these shocks. Because of the
kernel, the impact at time t of a past
shock dBs with s < t is weighted by
a number K(t− s) which depends on
how long ago the shock occurred. If
K is decreasing, the lasting impact
of a particular shock dBs decays as it
recedes farther into the past.

It should come as no surprise that this
dynamic is present in various situa-
tions of interest in finance. An exam-
ple is time series momentum, which
has been thoroughly documented in
the empirical finance literature start-
ing with Moskowitz et al. (2012). The
central finding is that positive returns
tend to be followed by further positive
returns, and correspondingly for neg-
ative returns—at least over the short
and medium term. Over the long
term, there is evidence of reversal.

With the right choice of kernel, (2)
becomes a natural toy model for log-
returns with time series momentum.
To see this, write Xt for the convolu-
tion in (2), and suppose the kernel K
is continuously differentiable. In this
case, the log-return dynamics takes
the form

dXt =

(∫ t

0

ρ(t− s)dXs

)
dt+ dBt,

(4)

where ρ is a new kernel related to K,
the so-called resolvent of the deriva-
tive K ′.a With a hump-shaped ker-
nel K as in Figure 4a, the resolvent
kernel ρ is initially positive and then
negative as in Figure 4b. Now look
back at the form (4) of the asset re-
turns. The given shape of ρ(t− s) im-
plies that recent positive log-returns
dXs contribute positively to the drift,
while recent negative log-returns con-
tribute negatively. This is momentum.
Over the long term however, positive
returns contribute negatively to the
drift, meaning reversal over longer
time horizons.

Stochastic convolutions make an ap-
pearance in other application areas as
well, for example models for energy
finance, see Barndorff-Nielsen et al.
(2013) and Bennedsen (2017), and
models for irreversible investment
along the lines of Cantor and Lippman
(1995) and Sonin (1995). Barndorff-
Nielsen and Schmiegel (2008) apply
them to problems in turbulence. They
are also a great tool for specifying
jump models. For example, the in-
tensity of a self-exciting jump pro-
cess such as a Hawkes process can
be viewed as the solution of a stochas-
tic convolution equation with jumps.
These equations look similar to (3),
but with a jump process (actually, the
Hawkes process itself) replacing the
Brownian motion. Hawkes processes
and their relatives have extremely
broad applicability, from arrivals of
limit orders to earthquake modeling
and neurons firing, to mention but a
few.

aAll this requires some computations. It is not supposed to be obvious.

PAST EVENTS

4TH EASTERN CONFERENCE ON
MATHEMATICAL FINANCE (ECMF)

October 25-27, 2019

Boston University, Boston, MA,
USA

MAFIA - MATHEMATICAL FINANCE
AND ANALYSIS SYMPOSIUM IN
HONOR OF PHILIP E. PROTTER

September 20-21, 2019

Columbia University, New York, NY,
USA

INTERNATIONAL CONGRESS ON
INDUSTRIAL AND APPLIED

MATHEMATICS (ICIAM 2019)

July 15-19, 2019

Universitat de València, Valencia,
Spain

6TH WORLD CONGRESS ON
GLOBAL OPTIMIZATION (WCGO

2019)

July 8-10, 2019

Metz, France
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PAST EVENTS

COMMODITY AND ENERGY
MARKETS ASSOCIATION (CEMA)

ANNUAL MEETING 2019

June 21-22, 2019

Carnegie Mellon University,
Pittsburgh, PA, USA

WORKSHOP ON DATA SCIENCE
AND OPTIMIZATION

June 17-18, 2019

University of Washington, Seattle,
WA, USA

9TH GENERAL AMAMEF
CONFERENCE

June 11-14, 2019

Paris, France

RUTGERS EQUILIBRIUM THEORY
SUMMER SCHOOL & WORKSHOP

June 10-13, 2019

Rutgers University, New Brunswick,
NJ, USA

SOUTHERN CALIFORNIA APPLIED
MATHEMATICS SYMPOSIUM

April 27, 2019

California Institute of Technology,
Pasadena, CA, USA

All this may sound good on paper, but
are models involving stochastic con-
volutions amenable to analysis? Put
bluntly, can we compute stuff with
them? Answer: yes and no. There
have been substantial advances with
regards to numerical simulation tech-
niques such as the Hybrid scheme of
Bennedsen et al. (2017). We do have
basic results on existence and unique-
ness going back to Protter (1985)
and more recently Abi Jaber et al.
(2019), among many others. Specifi-
cations analogous to affine diffusions
have been studied by Abi Jaber et al.
(2017). Progress toward Feynman–

Kac type representations involving
path-dependent partial differential
equations have been made by Viens
and Zhang (2017), to mention but a
few contributions.

Still, we do not yet have the same
range of tools that exist for SDEs,
where the Markov structure and avail-
ability of Itô calculus are of tremen-
dous help. Lots of work remains in or-
der to develop a comparably diverse,
complete, and convenient set of math-
ematical tools that can be brought to
bear on problems in finance and other
areas.
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UPCOMING EVENTS

AMS SHORT COURSE ON MEAN FIELD GAMES
January 13-14, 2020

Hyatt Regency at the Colorado Convention Center, Denver, CO, USA

SIAM CONFERENCE ON MATHEMATICS OF DATA SCIENCE
May 5-7, 2020

Hilton Cincinnati Netherland Plaza, Cincinnati, OH, USA

11TH WORLD CONGRESS OF THE BACHELIER FINANCE
SOCIETY
June 1-5, 2020

Hong Kong, China

2ND JOINT SIAM/CAIMS ANNUAL MEETING (AN20)
July 6-10, 2020

Sheraton Centre Toronto Hotel, Toronto, Ontario, Canada

We are proud to announce the newly elected SIAG/FME officers:

Chair: Agostino Capponi
Vice Chair: Birgit Rudloff
Program Director: Igor Cialenco
Secretary: Stephane Sturm

The retiring officers wish to thank the SIAG/FME community for the trust and support demonstrated over the last
three years. It has been a privilege to serve the community!

Ad Majora,

Francesca, Tim and Sebastian
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